Contents

1 Basic Principles of Sound
 1.1 Sound ... 1
 1.2 Sources of Sound ... 1
 1.3 Velocity of Sound ... 2
 1.4 Frequency of Sound ... 2
 1.5 Pitch .. 3
 1.6 Human Speech .. 4
 1.7 Frequency Bands ... 4
 1.8 Audio Sub Bands ... 5
 1.9 Sound Pressure Level ... 6
 1.10 Equal Loudness Contours 7
 1.11 Loudness Levels .. 9
 1.12 Audio Test Signals .. 11
 1.13 Problems ... 12

2 Fundamentals of Acoustics
 2.1 Basic Equations of Acoustics 15
 2.2 The Acoustic Wave Equation 16
 2.3 The Plane Wave ... 17
 2.4 Specific Impedance ... 17
 2.5 Acoustic Energy ... 18
 2.6 Acoustic Intensity .. 18
 2.7 Wavelength .. 19
 2.8 Particle Displacement .. 19
 2.9 The Omni-Directional Spherical Wave 20
 2.10 Volume Velocity .. 21
 2.11 The Simple Spherical Source 21
 2.12 Acoustic Images ... 22
 2.13 The Plane Circular Piston 23
 2.14 The Pattern Beamwidth 25
 2.15 Fresnel Diffraction Effects 26
 2.16 Acoustic Reflections .. 28
 2.17 Problems ... 30

3 Analogous Circuits of Acoustical Systems
 3.1 Acoustic Sources ... 33
 3.2 Acoustic Impedance ... 33
 3.3 The Plane Wave Tube ... 34
 3.4 Acoustic Resistance .. 37
 3.5 Acoustic Compliance .. 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Acoustic Mass</td>
<td>40</td>
</tr>
<tr>
<td>3.7 Acoustic Impedance on a Piston in a Baffle</td>
<td>43</td>
</tr>
<tr>
<td>3.8 Acoustic Impedance on a Piston in a Tube</td>
<td>45</td>
</tr>
<tr>
<td>3.9 Radiation Impedance on a Piston in Free Air</td>
<td>46</td>
</tr>
<tr>
<td>3.10 Problems</td>
<td>47</td>
</tr>
<tr>
<td>4 Analogous Circuits of Mechanical Systems</td>
<td>49</td>
</tr>
<tr>
<td>4.1 Mechanical Sources</td>
<td>49</td>
</tr>
<tr>
<td>4.2 Mass, Compliance, and Resistance</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Mechanical Systems</td>
<td>51</td>
</tr>
<tr>
<td>4.4 Moving-Coil Transducer</td>
<td>52</td>
</tr>
<tr>
<td>4.5 Crystal Transducer</td>
<td>55</td>
</tr>
<tr>
<td>4.6 Condenser Transducer</td>
<td>56</td>
</tr>
<tr>
<td>4.7 Mechano-Acoustic Transducer</td>
<td>60</td>
</tr>
<tr>
<td>4.8 Problems</td>
<td>61</td>
</tr>
<tr>
<td>5 Microphones</td>
<td>63</td>
</tr>
<tr>
<td>5.1 Classifications</td>
<td>63</td>
</tr>
<tr>
<td>5.2 Modeling Diaphragm Reflections</td>
<td>64</td>
</tr>
<tr>
<td>5.3 Diaphragm Back Acoustical Load</td>
<td>66</td>
</tr>
<tr>
<td>5.4 Diaphragm Mechanical Parameters</td>
<td>67</td>
</tr>
<tr>
<td>5.5 Condenser Microphone</td>
<td>67</td>
</tr>
<tr>
<td>5.6 Condenser Microphone SPICE Simulation</td>
<td>70</td>
</tr>
<tr>
<td>5.7 Condenser Microphone Buffer Amplifiers</td>
<td>72</td>
</tr>
<tr>
<td>5.8 Dynamic Microphone</td>
<td>73</td>
</tr>
<tr>
<td>5.9 Ribbon Microphone</td>
<td>75</td>
</tr>
<tr>
<td>5.10 Proximity Effect</td>
<td>78</td>
</tr>
<tr>
<td>5.11 Combination Microphone</td>
<td>80</td>
</tr>
<tr>
<td>5.12 Problems</td>
<td>82</td>
</tr>
<tr>
<td>6 Moving-Coil Loudspeakers</td>
<td>85</td>
</tr>
<tr>
<td>6.1 Construction</td>
<td>85</td>
</tr>
<tr>
<td>6.2 Analogous Circuits</td>
<td>88</td>
</tr>
<tr>
<td>6.3 Combination Analogous Circuit</td>
<td>89</td>
</tr>
<tr>
<td>6.4 Infinite Baffle Analogous Circuit</td>
<td>90</td>
</tr>
<tr>
<td>6.5 Low-Frequency Solution for U_D</td>
<td>91</td>
</tr>
<tr>
<td>6.6 Low-Frequency Bode Plots for U_D</td>
<td>91</td>
</tr>
<tr>
<td>6.7 Small-Signal Parameters</td>
<td>92</td>
</tr>
<tr>
<td>6.8 High-Frequency Solution for U_D</td>
<td>93</td>
</tr>
<tr>
<td>6.9 On-Axis Pressure</td>
<td>94</td>
</tr>
<tr>
<td>6.10 Pressure Transfer Function</td>
<td>95</td>
</tr>
<tr>
<td>6.11 Bode Plots of On-Axis Pressure</td>
<td>95</td>
</tr>
<tr>
<td>6.12 Filter Theory Description of $G(s)$</td>
<td>97</td>
</tr>
<tr>
<td>6.13 Cutoff Frequencies</td>
<td>97</td>
</tr>
<tr>
<td>6.14 Effect of Non-Zero Generator Resistance</td>
<td>98</td>
</tr>
<tr>
<td>6.15 Frequency of Peak Response</td>
<td>99</td>
</tr>
<tr>
<td>6.16 Voice-Coil Impedance</td>
<td>100</td>
</tr>
<tr>
<td>6.17 The Lossy Voice-Coil Inductance</td>
<td>102</td>
</tr>
<tr>
<td>6.18 On-Axis Pressure Sensitivity</td>
<td>102</td>
</tr>
<tr>
<td>6.19 Acoustic Power Response</td>
<td>103</td>
</tr>
<tr>
<td>6.20 Reference Efficiency</td>
<td>105</td>
</tr>
<tr>
<td>6.21 Diaphragm Displacement Function</td>
<td>105</td>
</tr>
</tbody>
</table>
CONTENTS

6.22 Voice-Coil Electrical Power Rating ... 106
6.23 Displacement Limited Power Rating ... 107
6.24 SPICE Models ... 107
6.25 Problems ... 110

7 Closed-Box Loudspeaker Systems ... 113
7.1 Modeling the Box ... 113
7.2 The Analogous Circuits ... 115
7.3 The Volume Velocity Transfer Function .. 116
7.4 The On-Axis Pressure Transfer Function .. 117
7.5 Effect of the Box on the System Response .. 118
7.6 Sensitivity of the Lower Cutoff Frequency ... 119
7.7 System Design with a Given Driver ... 120
7.8 System Verification .. 121
7.9 System Design From Specifications ... 121
7.10 A SPICE Simulation Example .. 123
7.11 Problems .. 124

8 Vented-Box Loudspeaker Systems .. 127
8.1 Modeling the Enclosure ... 127
8.2 Effect of the Vent ... 128
8.3 The On-Axis Pressure Transfer Function .. 129
8.4 Voice-Coil Impedance Function .. 130
8.5 The Magnitude-Squared Function ... 131
8.6 The B4 Alignment ... 132
8.7 The QB3 Alignments .. 133
8.8 The Chebyshev Alignments ... 133
8.9 Example Pressure Responses ... 135
8.10 Design with a Given Driver ... 135
8.11 System Verification .. 140
8.12 Design from Specifications ... 140
8.13 Vented-Box SPICE Example .. 141
8.14 Problems .. 145

9 Acoustic Horns .. 147
9.1 The Webster Horn Equation ... 147
9.2 Salmon’s Family of Horns .. 147
9.3 Finite Length Horn Size ... 150
9.4 A Horn Analogous Circuit .. 150
9.5 SPICE Examples ... 151
9.6 Horn Driving Units .. 155
9.7 Mid-Frequency Range ... 156
9.8 Condition for Maximum P_{AR} .. 157
9.9 The Horn Efficiency .. 157
9.10 The Low-Frequency Range ... 158
9.11 The High-Frequency Range ... 158
9.12 Low-Frequency System Design .. 159
9.12.1 Design with a Given Driver ... 159
9.12.2 System Design from Specifications ... 161
9.13 Problems .. 162
10 Crossover Networks 163
 10.1 Role of Crossover Networks 163
 10.2 Passive Crossover Networks 164
 10.3 L-Pad Design ... 167
 10.4 Effect of the Voice-Coil Impedance 169
 10.5 Effect of the Driver Phase Response 170
 10.6 Constant-Voltage and All-Pass Functions 175
 10.7 Active Crossover Networks 178
 10.8 A SPICE Modeling Example 180
 10.9 Problems ... 182

11 A Loudspeaker Potpourri 187
 11.1 The Isobaric Connection 187
 11.1.1 The Acoustical Analogous Circuit 187
 11.1.2 The Small-Signal Parameters 188
 11.1.3 SPICE Simulation Example 188
 11.2 4th-Order Bandpass Systems 190
 11.2.1 System Description 190
 11.2.2 Output Volume Velocity 190
 11.2.3 On-Axis Pressure .. 191
 11.2.4 Fourth-Order Band-Pass Functions 192
 11.2.5 System Parameters 192
 11.2.6 Design with a Given Driver 193
 11.3 6th-Order Bandpass Systems 193
 11.3.1 System Transfer Function 193
 11.3.2 System Alignment Functions 195
 11.3.3 System Design from Specifications 196
 11.3.4 Example System Design 197
 11.4 Passive Radiator Systems 198
 11.4.1 System Transfer Function 198
 11.4.2 Example System Design 200
 11.5 Assisted Vented-Box Alignments 201
 11.5.1 System Transfer Functions 201
 11.5.2 5th-Order Alignments 202
 11.5.3 6th-Order Alignments 203
 11.5.4 The Vented-Box System Parameters 204
 11.5.5 Example Design from Specifications 204
 11.6 A Closed-Box System Equalizer 206
 11.6.1 Equalizer Transfer Function 206
 11.6.2 Equalizer Circuit 207
 11.6.3 Example Realization 207
 11.7 Driver Parameter Measurements 208
 11.7.1 Basic Theory .. 208
 11.7.2 The Measurement Test Set 209
 11.7.3 Measuring R_E, f_S, Q_{MS}, Q_{ES}, and Q_{TS} 210
 11.7.4 Measuring V_{AS} 211
 11.7.5 Conversion to Infinite-Baffle Parameters 212
 11.7.6 Measuring the Voice-Coil Inductance 212
 11.8 Parameter Measurement Summary Sheet 215
CONTENTS

12 Audio Power Amplifiers 217
12.1 Power Specifications 217
12.2 Effects of Feedback 219
 12.2.1 Feedback Amplifier Gain 219
 12.2.2 Effect of Feedback on Distortion and Noise 220
 12.2.3 Effect of Feedback on Output Resistance........ 220
12.3 Amplifier Model 221
 12.3.1 Open-Loop Transfer Function 222
 12.3.2 Gain Bandwidth Product 223
 12.3.3 Slew Rate 224
 12.3.4 Relations between Slew Rate and Gain-Bandwidth Product 224
 12.3.5 Closed-Loop Transfer Function 225
 12.3.6 Transient Response 225
 12.3.7 Input Stage Overload 226
 12.3.8 Full Power Bandwidth 227
 12.3.9 Effect of an Input Low-Pass Filter 229
 12.3.10 JFET Diff Amp 231
 12.3.11 Diff Amp with Current-Mirror Load 232
12.4 Signal Tracing 233
12.5 The Stability Criterion 236
 12.5.1 The Bode Stability Theorem 236
 12.5.2 Single-Pole Amplifier 238
 12.5.3 Two-Pole Amplifier 239
 12.5.4 An Alternate Stability Criterion 241
12.6 Techniques for Compensating Feedback Amplifiers 242
 12.6.1 Gain Constant Reduction 243
 12.6.2 First Pole Lag Compensation 244
 12.6.3 Second Pole Lead Compensation 245
 12.6.4 Feedforward Compensation 246
12.7 Output Stage Topologies 247
 12.7.1 Common-Collector Stage 247
 12.7.2 Common-Emitter Stage 249
 12.7.3 Quasi-Complementary Output Stage 250
 12.7.4 MOSFET Output Stages 250
12.8 Voltage Gain Stage 251
12.9 Input Stage 252
12.10 Completed Amplifier Circuit 254
12.11 Protection Circuits 256
 12.11.1 BJT Protection Circuits 256
 12.11.2 MOSFET Protection Circuits 259
12.12 Power Supply Design 260
12.13 Decoupling and Grounding 262
12.14 Power Dissipation and Efficiency 264
12.15 The Class-D Amplifier 265
12.16 Amplifier Measurements 271
12.17 Problems 275

A References 281

B Electroacoustic Glossary of Symbols 283

Top margin offset = −0.395 for first pages. Erase this line before printing the TOC.
Preface

This book is an outgrowth of a senior level elective course in audio engineering that I have taught to electrical engineering students at the Georgia Institute of Technology. The first part of the book covers basic acoustics. The emphasis is on that part of acoustics that pertains to the field of audio engineering. Most of the remainder of the book concerns the application of the tools of electroacoustics to the analysis and synthesis of microphones, loudspeakers, crossover networks, and acoustic horns. The book also concludes with a chapter that covers the basic theory of audio amplifier design.

Electroacoustics is that part of acoustics that pertains to the modeling of acoustical systems with electrical circuits. Because most acoustical devices have a mechanical part, the modeling of mechanical systems with electrical circuits is a basic part of electroacoustics. Separate chapters in the book are devoted to analogous circuits of mechanical systems and to analogous circuits of acoustical systems. The traditional approach in these circuits has been to use transformers to model the coupling between the electrical, the mechanical, and the acoustical parts. A major departure in this book is the use of controlled sources to model the coupling. An advantage of this approach is that it avoids the need for mobility analogs. In addition, I have found that students have much less difficulty with the approach. Perhaps this is because the controlled-source circuits are more intuitive than the transformer circuits. The circuits can be easily analyzed with circuit simulation software such as SPICE.

Electroacoustic models are developed for the more common microphone types and for the moving-coil loudspeaker driver. Separate chapters cover closed-box and vented-box loudspeaker systems. Although the emphasis is on basic system theory, practical methods of design are also presented. Because crossover networks are such an important part of loudspeaker systems, a chapter is devoted to crossover networks. Acoustic horns are a vital component in public address systems. A chapter is devoted to horn models. A chapter entitled “A Loudspeaker Potpourri” covers topics such as the isobaric loudspeaker connection, band-pass systems, passive-radiator systems, equalized systems, and loudspeaker parameter measurements. In all cases, SPICE simulation examples are presented where appropriate.

One might ask why a chapter on audio amplifiers is included in a book that is primarily concerned with electroacoustics. Without a power amplifier, a loudspeaker could not make sound. Therefore, one might say that the role of an amplifier in a system is just as important as the role of a loudspeaker. The chapter on amplifiers is not intended to be an in-depth chapter on electronic theory. Instead, it addresses the more important aspects of amplifier design with an emphasis on the basic operation of the circuits. Practical examples are presented that illustrate how some of the pitfalls of amplifier design can be avoided.

In the text, two parallel lines between variables denote the product divided by the sum, i.e.

\[\frac{x}{y} = \frac{xy}{x + y} \]

An errata and updates can be found at http://users.ece.gatech.edu/mleach/audiotext/.

W. Marshall Leach, Jr.
April 2003
Index

A-weighting filter, 10
Acoustic compliance, 37, 39, 114
Acoustic horn
 Analogous circuit, 151
 Catenoidal, 148
 Condition for maximum power, 157
 Conical, 148
 Cutoff frequency, 149
 Efficiency, 158
 Exponential, 148
 High-frequency range, 158
 Horn driving unit, 155
 Hyperbolic, 148
 Low-frequency range, 158
 Mid-frequency range, 156
 Mouth area, 150
 Phase correction plug, 155
 Power radiated, 156
 Propagation constant, 149
 Salmon’s family of horns, 147
 SPICE examples, 151
 Throat admittance, 149
 Upper cutoff frequency, 159
 Webster horn equation, 147
Acoustic image, 22
Acoustic impedance, 34, 44
Acoustic intensity, 18
Acoustic low-pass filter, 42
Acoustic pressure, 34, 37, 40, 114, 128
Acoustic mass, 6, 15
Acoustic reflections, 28
Acoustic resistance, 34, 36, 37
Acoustic suspension system, 116
Acoustical absorber, 113
Adiabatic process, 15
Air suspension system, 116
Ambient pressure, 2, 16
Amplifier
 Amount of feedback, 219
 Average power, 217, 271
 Bandwidth, 271
 BJT safe operating area, 257
 Bode stability criterion, 237, 241
 Bridge rectifier, 260, 261
 Bridged configuration, 218, 267
 Center clipping, 248
 Central ground, 260, 262
 Class A, B, AB, and C, 249
 Class D, 265
 Clipping voltage, 261
 Closed-loop gain, 219
 Closed-loop transfer function, 225
 Common collector output stage, 247
 Common drain output stage, 250
 Common emitter output stage, 249
 Common source output stage, 250
 Compensating capacitor, 221, 245
 Crossover distortion, 248
 Current limiter, 256, 259
 Current-mirror diff-amp load, 232
 Damping factor, 221, 272
 Dc feedback, 100%, 234, 254
 Differential input range, 227
 Distortion, 220
 Efficiency, 264
 Electronic notation, 217
 Feedback ratio, 219, 254
 Feedforward compensation, 246, 249, 254
 Filter capacitors, 262
 Filterless Class D, 270
 Full-power bandwidth, 228
 Fusing, 261
 Gain constant reduction, 243
 Gain peaking, 240, 243
 Gain-bandwidth product, 223
 Ground loop, 262
 Grounding and decoupling, 262, 263
 Heat sink dissipation, 264
 Input low-pass filter, 253
 Input stage, 252
 Input stage overload, 227, 229, 230, 253
 Intermodulation distortion, 274
 Intrinsic emitter resistance, 222, 253
 JFET input stage, 231
 Lag compensation, 245

286
Lead compensation, 242, 245
Loop-gain transfer function, 236
Measurements, 271
Model, 221
MOSFET threshold current, 252
Noise, 220
Op-amp approximation, 219
Open-loop gain, 219
Oscillations, Conditions for, 237
Output resistance, 221, 272
Parasitic oscillations, 248, 254, 259
Peak power, 218
Phase margin, 237, 239, 240, 242, 243
Power supply, 260
Power supply voltage, 261
Power switch, 261
Power transformer, 260–262
Protection circuits, 256
Quasi-complementary output stage, 250
Ringing, 240
Shoot through, 269
Signal tracing, 233
Signal-to-noise ratio, 272
Slew limited output voltage, 227
Slew rate, 224, 272
Strapped configuration, 218
Sziklai output stage, 249
Thermal runaway, 248, 252
Total harmonic distortion, 273
Transient response, 226, 240
Triangle wave generator, 269
Unity-gain frequency, 223, 238, 239
VI limiter, 257
Voltage gain, 271
Voltage gain stage, 251

Bandpass systems
Fourth order, 190
Pressure sensitivity, 192
Sixth order, 193
Pressure sensitivity, 196

Capacitor transducer, 56
Cardioid microphone, 80
Cardioid pattern, 81
Cavity microphone, 63
Charles-Boyle gas law, 15
Closed-box system, 113
Analogous circuits, 115
Combination analogous circuit, 115
Compliance ratio, 115
Design from specifications, 121

Design with a given driver, 120
Diaphragm volume displacement, 122
Effect of box volume, 118
Equalized, 206
Equalizer circuit, 207
Lower cutoff frequency, 119
On-axis pressure, 117
Reference efficiency, 121
Relations to infinite-baffle parameters, 117
Rule of thumb for Q_{MC}, 117
Sensitivity of lower cutoff frequency, 119
Small-signal parameters, 116
SPICE example, 123
Comb filter effect, 29
Combination microphone, 80
Compliance ratio, 115
Condenser microphone, 56, 67
Buffer amplifier, 72
Critical polarizing voltage, 70
Equivalent circuit, 70
Phantom powering, 72
SPICE example, 70
Condenser transducer, 56, 68
Crossover frequency, 163
Crossover network, 163
Active filter networks, 178
All-pass functions, 175
Constant-voltage functions, 175
Cutoff frequency, 163
Effect of driver phase response, 170
Effect of voice-coil impedance, 169
First order networks, 164
L-pad design, 167
Matching network, 169, 182
Second order networks, 165
SPICE example, 180
Third order networks, 166
Zobel network, 169
Crystal transducer, 55
Coupling coefficient, 56

Density of air, 2, 16
Diaphragm reflections, 64
Driver parameter measurements, 209
Compliance box, 211
Measurement summary sheet, 215
Test setup, 209
Voice-coil inductance, 212
Drone cone, 198
Dual circuits, 52
Dual Helmholtz system, 193
Dynamic microphone, 73
Effective acoustic volume, 114
Effective density, 114
Electret condenser microphone, 68
Electromagnetic-mechanical transducer, 52
Electrostatic loudspeaker, 56
Electrostatic-mechanical transducer, 55
End corrections, 41
Equal-loudness contours, 7
Euler equation, 147
Far-field distance, 25
Filling, 113
Fletcher-Munson contours, 7
Force source, 49
Free-field microphone, 63
Frequency band
 Audible, 2
 Human speech, 4
 Infrasonic, 2
 Octave, 4
 Ultrasonic, 2
Fresnel diffraction, 26
Gradient microphone, 77
Graphic equalizer, 5
Helmholtz equation, 17
Helmholtz frequency, 128
Helmholtz resonator, 42, 127
Hookup wire, 262
Impedance analogous circuit, 33, 49
Infinite-baffle system, 116
Infrasonic band, 2
ISO frequencies, 4
Isobaric connection, 187
Isobaric region, 187
Isothermal process, 113
Kinetic energy density, 18
Loudness compensation, 8
 Loudness control, 8
Loudspeaker enclosure
 Dimension ratios, 120
 Internal bracing, 121
 Internal dimensions, 121
 Volume occupied by driver, 120
Mass loading factor, 114
Mechanical compliance, 50
Mechanical diagram, 51
Mechanical mass, 50
Mechanical resistance, 50
Mechanical systems, 51
Mechano-acoustic transducer, 60
Mel pitch, 3
Mobility analogous circuit, 33, 49
Moving-coil loudspeaker, 85
 Acoustic power response, 104, 105
 Combination analogous circuit, 89, 90
 Diaphragm, 85
 Diaphragm displacement, 105
 Diaphragm displacement limit, 87
 Displacement limited power rating, 107
 Dust cover, 86
 Eddy current losses, 88
 Electrical power rating, 106
 Electrical quality factor, 92
 Former, 86
 Frequency of peak displacement, 105
 Frequency of peak response, 99
 High-frequency analogous circuit, 93
 Long voice coil, 86
 Low-frequency analogous circuit, 91
 Lower cutoff frequency, 97, 98
 Magnet assembly, 86
 Mechanical quality factor, 92
 Motional impedance, 100
 On-axis pressure phase response, 96
 On-axis pressure transfer function, 95
 Parameter measurements, 209
 Peak diaphragm displacement, 106
 Piston radius, 87
 Pressure function alignments, 97
 Pressure sensitivity, 102
 Reference efficiency, 105
 Resonance frequency, 91
 Short voice coil, 86
 SPICE models, 108
 SPL sensitivity, 102
 Suspension, 85
 Total quality factor, 91
 Upper cutoff frequency, 98, 99
 Voice coil, 86
 Voice-coil equivalent circuit, 101
 Voice-coil impedance, 100
 Voice-coil inductance, 88, 102
 Voice-coil resistance, 88
 Volume compliance, 92
 Volume velocity transfer function, 91
Moving-coil transducer, 52, 73
Mutual coupling, 48
Near-field diffraction, 27
Octave, 4
Particle displacement, 19
Particle velocity, 15
Passive radiator system, 198
Pattern beamwidth, 25
Phase of transfer function, 171
Phon, 9
Piston area, 21
Piston range, 163
Pitch, 3
 Perception of, 4
Plane circular piston, 23, 43, 45, 46
Plane wave, 17
Plane-wave tube, 34
Potential energy density, 18
Pressure source, 33
Pressure-zone microphone, 63
Proximity effect, 79, 81
Pulsating sphere, 21, 34
Radiation pattern, 25
Radiation resistance, 22
Reactance annulling, 149
Real-time spectrum analyzer, 5, 12
Reduced wave equation, 17
Ribbon microphone, 75
Root mean square, 6
Sallen-Key filter, 178, 179, 205
Simple spherical source, 21
Sone, 9
Sound level meter, 7
Sound pressure level, 6, 7, 10
Specific impedance, 17, 20
Spectral density, 12
Spherical wave, 20
Steradian, 22
Test signals
 Pink noise, 5, 11, 12
 Sine wave, 11
 Square wave, 11
Three-way system, 163
Total volume compliance, 116
Two-way system, 163
Ultrasonic band, 2
Velocity microphone, 77
Velocity of sound, 2, 16
Velocity source, 49
Vented-box system, 127

Analogous circuits, 127
B4 alignment, 132
C4 alignment, 133
Combination analogous circuit, 128
Design from specifications, 140
Design with a given driver, 135
Effect of the vent, 128
Equalized, 201
Example pressure responses, 135
Fifth-order alignment, 202
Magnitude-squared function, 131
On-axis pressure, 130
QB3 alignment, 133
Rule of thumb for Q_L, 135
Sixth-order alignment, 203
SPICE examples, 141
Vent length formula, 136
Voice-coil impedance, 130
Virtual work, 58
Voice-coil polarity, 172
Volume velocity, 21
Volume-velocity source, 33
Wave equation for p, 16
Wave equation for \vec{u}, 16
Wavelength, 19
Wavenumber, 17
Zobel network, 169, 254