1. It is given that $V_1 = 30\,\text{V}$, $R_1 = 1.5\,\text{k}\,\Omega$, $R_2 = 3\,\text{k}\,\Omega$, and $R_3 = 1\,\text{k}\,\Omega$. (An alternate version of the problem had $V_1 = 15\,\text{V}$, $R_1 = 3\,\text{k}\,\Omega$, $R_2 = 1.5\,\text{k}\,\Omega$, and $R_3 = 1\,\text{k}\,\Omega$.)
 (a) Solve for the Thévenin voltage V_S and Thévenin resistance R_S seen by the diode.

 ![Circuit Diagram]

 $$V_S = V_1 \frac{R_1}{R_1 + R_2} = 10\,\text{V} \quad R_S = R_1 || R_2 + R_3 = 2\,\text{k}\,\Omega$$

 (b) Draw the load line for the diode on the characteristics given and estimate the diode voltage and current at the Q point.

 ![Load Line Diagram]

 $\approx (3\,\text{V}, 3.5\,\text{mA})$

2. (a) A diode is biased at a constant current. If the temperature changes in constant increments ΔT, describe the mathematical variation of the diode voltage. *Answer:* It changes by an additive amount, i.e. you add or subtract something each time the temperature increases by ΔT.
 (b) If the temperature of a diode changes in constant increments ΔT, describe the mathematical variation of the saturation current of the diode. *Answer:* It changes by a multiplicative factor, i.e. you multiply by something each time the temperature increases by ΔT.
 (c) Represent the total voltage across a diode by $v_D = V_D + v_d$ and the total current through the diode by $i_D = I_D + i_d$, where V_D and I_D are the Q-point values and v_d and i_d are small-signal changes about the Q point. In deriving the small-signal model of the diode, what is the basic mathematical step that is used to relate i_d to v_d? *Answer:* You solve for the slope or derivative of the i_D versus v_D curve at the Q point and set this equal to the ratio i_d/v_d. Although not part of the answer, this slope is the reciprocal of the small-signal resistance r_d.
