ECE 3050 Analog Electronics Quiz 4

September 16, 2009

Given equations: $i'_c = g_m v_\pi = \alpha i'_e = \beta i_b$, $g_m = I_C/V_T$, $r_\pi = V_T/I_B$, and $r_e = V_T/I_E$, and $I_C = \alpha I_E = \beta I_B$.

- 1 of 2. The signal circuit of a two-stage BJT amplifier is shown. It is given that $I_{E1} = 1.25 \text{ mA}, I_{E2} = 2.5 \text{ mA},$
 - $\alpha = 0.99, \ \beta = 99, \ r_x = 0 \ \Omega, \ r_0 = \infty, \ V_T = 0.025 \ \mathrm{V}, \ R_S = 50 \ \Omega, \ R_C = 2.4 \ \mathrm{k}\Omega, \ \mathrm{and} \ R_E = 300 \ \Omega.$
 - (a) In terms of CE, CB, and CC, how would you describe this circuit?
 - (b) Solve for r_{in} .

(c) Denote the Thévenin equivalent circuit seen looking out of the base of Q_2 by v_{tb2} and R_{tb2} . With Q_2 erased, solve for v_{tb2}/v_s and R_{tb2} . Use any one of the small-signal circuits covered in class.

Let $v_s := 1$ The value off v_o is the voltage gain.

$$r_{e1} := \frac{V_T}{I_{E1}}$$
 $r_{e1} = 20$ $r_{e2} := \frac{V_T}{I_{E2}}$ $r_{e2} = 10$ $r'_{e1} := r_{e1}$

$$i'_{e1} := \frac{-v_s}{R_s + r'_{e1}}$$
 $i'_{e1} = -0.014$ $v_{tb2} := -\alpha \cdot i'_{e1} \cdot R_c$ $v_{tb2} = 33.943$

 $r_{in} := r'_{e1}$ $r_{in} = 20$

2 of 2. Replace the circuit seen looking out of the base of Q_2 with a voltage source labeled v_{tb2} in series with the resistance R_{tb2} found in problem 1.

(a) Solve for v_o/v_{tb2} and r_{out} . Use any one of the small-signal circuits covered in class. Note – you don't need a number for v_{tb2} , but you do need a number for R_{tb2} . Even if you don't know how to work problem 1, you should be able to tell the value of R_{tb2} by inspection of the circuit diagram given.

(b) Put the answers for problems 1 and 2 together to solve for v_o/v_s .

$$R_{tb2} := R_C$$
 $r'_{e2} := \frac{R_{tb2}}{1+\beta} + r_{e2}$ $r'_{e2} = 34$ $i'_{e2} := \frac{v_{tb2}}{r'_{e2} + R_E}$ $i'_{e2} = 0.102$

 $v_{01} := i'_{02} \cdot R_E$ $v_{01} = 30.488$ Solution 1

 $v_{o2} := v_{tb2} \cdot \frac{R_E}{r'_{e2} + R_E}$ $v_{o2} = 30.488$ Solution 2

 $r_{out} := R_{p2}(R_E, r'_{e2})$ $r_{out} = 30.539$