The Common-Emitter Amplifier

Basic Circuit

Fig. 1 shows the circuit diagram of a single stage common-emitter amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output resistance.

DC Solution

(a) Replace the capacitors with open circuits. Look out of the 3 BJT terminals and make Thévenin equivalent circuits as shown in Fig. 2.

\[V_{BB} = \frac{V^+ R_2 + V^- R_1}{R_1 + R_2} \quad R_{BB} = R_1 \parallel R_2 \quad V_{EE} = V^- \quad R_{EE} = R_E \]

(b) Make an “educated guess” for \(V_{BE} \). Write the loop equation between the \(V_{BB} \) and the \(V_{EE} \) nodes.

\[V_{BB} - V_{EE} = I_B R_{BB} + V_{BE} + I_E R_{EE} = \frac{I_C}{\beta} R_{BB} + V_{BE} + \frac{I_C}{\alpha} R_{EE} \]

(c) Solve the loop equation for the currents.

\[I_C = \alpha I_E = \beta I_B = \frac{V_{BB} - V_{EE} - V_{BE}}{R_{BB}/\beta + R_{EE}/\alpha} \]

(d) Verify that \(V_{CB} > 0 \) for the active mode.

\[V_{CB} = V_C - V_B = (V_{CC} - I_C R_{CC}) - (V_{BB} - I_B R_{BB}) = V_{CC} - V_{BB} - I_C (R_{CC} - R_{BB}/\beta) \]
Figure 2: Bias circuit.

Figure 3: Signal circuit.
Small-Signal or AC Solutions

(a) Redraw the circuit with $V^+ = V^- = 0$ and all capacitors replaced with short circuits as shown in Fig. 3.

(b) Calculate g_m, r_π, r_e, and r_0 from the DC solution.

$$g_m = \frac{I_C}{V_T}, \quad r_\pi = \frac{V_T}{I_B}, \quad r_e = \frac{V_T}{I_E}, \quad r_0 = \frac{V_A + V_{CE}}{I_C}$$

(c) Replace the circuits looking out of the base and emitter with Thévenin equivalent circuits as shown in Fig. 4.

$$v_{tb} = v_s \frac{R_1 || R_2}{R_s + R_1 || R_2}, \quad R_{tb} = R_1 || R_2, \quad v_{te} = 0, \quad R_{te} = R_E || R_3$$

![Figure 4: Signal circuit with Thévenin base circuit.](image)

Exact Solution

This solution is based on the exact equivalent circuits developed in the more advanced notes on the BJT. It treats r_0 as a resistor from collector to emitter without the r_0 approximations.

(a) Replace the BJT in Fig. 4 with the Thévenin base circuit and the Norton collector circuit as shown in Fig. 5.

![Figure 5: Base and collector equivalent circuits.](image)
(b) Solve for $i_{c(sc)}$.

\[i_{c(sc)} = G_{mb}v_{ib} = G_{mb}v_s \frac{R_1 \parallel R_2}{R_s + R_1 \parallel R_2} \]

\[G_{mb} = \frac{\alpha}{r'_e + R_{te}} \frac{r_0 - R_{te}/\beta}{r_0 + R_{te}} \]

\[r'_e = \frac{R_{ib} + r_x}{1 + \beta} + r_e \]

(c) Solve for v_o.

\[v_o = -i_{c(sc)}r_{ic} \parallel R_C \| R_L = -G_{mb}v_s \frac{R_1 \parallel R_2}{R_s + R_1 \parallel R_2} r_{ic} \parallel R_C \| R_L \]

\[r_{ic} = \frac{r_0 + r'_e R_{te}}{1 - \alpha R_{te} / (r'_e + R_{te})} \]

(d) Solve for the voltage gain.

\[A_v = \frac{v_o}{v_s} = -G_{mb} \frac{R_1 \parallel R_2}{R_s + R_1 \parallel R_2} r_{ic} \parallel R_C \| R_L \]

(e) Solve for r_{in}.

\[r_{in} = R_1 \parallel R_2 \parallel r_{ib} \]

\[r_{ib} = r_x + r_\pi + R_{te} \frac{(1 + \beta) r_0 + R_{te}}{r_0 + R_{te} + R_{te}} \]

(f) Solve for r_{out}.

\[r_{out} = r_{ic} \parallel R_C \]

(g) Special Case for $R_{te} = 0$.

\[G_{mb} = \frac{\alpha}{r'_e} \]

\[r_{ic} = r_0 \]

\[r_{ib} = r_x + r_\pi \]

(h) Special Case for $r_0 = \infty$.

\[G_{mb} = \frac{\alpha}{r'_e + R_{te}} \]

\[r_{ic} = \infty \]

\[r_{ib} = r_x + r_\pi + (1 + \beta) R_{te} \]

Example 1 For the CE amplifier of Fig. 1, it is given that $R_s = 5 \, \text{k}\Omega$, $R_1 = 120 \, \text{k}\Omega$, $R_2 = 100 \, \text{k}\Omega$, $R_C = 4.3 \, \text{k}\Omega$, $R_E = 5.6 \, \text{k}\Omega$, $R_3 = 100 \, \Omega$, $R_L = 20 \, \text{k}\Omega$, $V^+ = 15 \, \text{V}$, $V^- = -15 \, \text{V}$, $V_{BE} = 0.65 \, \text{V}$, $\beta = 99$, $\alpha = 0.99$, $r_x = 20 \, \Omega$, $V_A = 100 \, \text{V}$ and $V_T = 0.025 \, \text{V}$. Solve for the gain $A_v = v_o/v_s$, the input resistance r_{in}, and the output resistance r_{out}. The capacitors can be assumed to be ac short circuits at the operating frequency.

Solution. For the dc bias solution, replace all capacitors with open circuits. The Thévenin voltage and resistance seen looking out of the base are

\[V_{BB} = \frac{V^+ R_2 + V^- R_1}{R_1 + R_2} = -1.364 \, \text{V} \]

\[R_{BB} = R_1 \parallel R_2 = 54.55 \, \text{k}\Omega \]

The Thévenin voltage and resistance seen looking out of the emitter are $V_{EE} = V^-$ and $R_{EE} = R_E$. The bias equation for I_E is

\[I_E = \frac{V_{BB} - V_{EE} - V_{BE}}{R_{BB}/(1 + \beta) + R_{EE}} = 2.113 \, \text{mA} \]
To test for the active mode, we calculate the collector-base voltage

\[V_{CB} = V_C - V_B = (V^+ - \alpha I_E R_C) - \left(V_{BB} - \frac{I_E}{1 + \beta} R_{BB} \right) = 8.521 \text{ V} \]

Because this is positive, the BJT is biased in its active mode.

For the small-signal ac analysis, we need \(r_0 \) and \(r_e \). To calculate \(r_0 \), we first calculate the collector-emitter voltage

\[V_{CE} = V_{CB} + V_{BE} = 9.171 \text{ V} \]

It follows that \(r_0 \) and \(r_e \) have the values

\[r_0 = \frac{V_A + V_{CE}}{\alpha I_E} = 52.18 \text{ k} \Omega \quad r_e = \frac{V_T}{I_E} = 11.83 \text{ k} \Omega \]

For the small-signal analysis, \(V^+ \) and \(V^- \) are zeroed and the three capacitors are replaced with ac short circuits. The Thévenin voltage and resistance seen looking out of the base are given by

\[v_{tb} = v_s \frac{R_1 || R_2}{R_s + R_1 || R_2} = 0.916 v_s \quad R_{tb} = R_s || R_1 || R_2 = 4.58 \text{ k} \Omega \]

The Thévenin resistances seen looking out of the emitter and the collector are

\[R_{te} = R_E || R_3 = 98.25 \text{ k} \Omega \quad R_{tc} = R_C || R_L = 3.539 \text{ k} \Omega \]

Next, we calculate \(r'_{e} \), \(G_{mb} \), \(r_{ic} \), and \(r_{ib} \).

\[r'_{e} = \frac{R_{tb} + r_x}{1 + \beta} + r_e = 57.83 \text{ k} \Omega \]

\[G_{mb} = \frac{\alpha}{r'_{e} + R_{te} || r_0} \frac{r_0 - R_{te} / \beta}{r_0 + R_{te}} = \frac{1}{157.8} \text{ S} \]

\[r_{ic} = \frac{r_0 + r'_{e} || R_{te}}{1 - \alpha R_{te} / (r'_{e} + R_{te})} = 138.6 \text{ k} \Omega \]

\[r_{ib} = r_x + (1 + \beta) r_e + R_{te} \frac{(1 + \beta) r_0 + R_{te}}{r_0 + R_{te} + R_{tc}} = 10.39 \text{ k} \Omega \]

The output voltage is given by

\[v_o = -G_{mb} \times (r_{ic} || R_{tc}) v_{tb} = -G_{mb} \times (r_{ic} || R_{tc}) \times 0.916 v_s = -20.04 v_s \]

Thus the voltage gain is

\[A_v = -20.04 \]

The input and output resistances are given by

\[r_{in} = R_1 || R_2 || r_{ib} = 8.73 \text{ k} \Omega \quad r_{out} = r_{ic} || R_C = 3.539 \text{ k} \Omega \]

Approximate Solutions

These solutions use the \(r_0 \) approximations. That is, it is assumed that \(r_0 = \infty \) except in calculating \(r_{ic} \). In this case, \(i_{c(sc)} = i'_{c} = \alpha i'_e = \beta i_b \).
Figure 6: Simplified T model circuit.

Simplified T Model Solution

(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the BJT with the simplified T model as shown in Fig. 6.

(b) Solve for \(i'_e \).

\[
i'_e = \frac{v_{tb}}{r'_e + R_{te}} = v_s \frac{R_1||R_2}{R_s + R_1||R_2 r'_e + R_{te}} \frac{1}{\alpha}
\]

(b) Solve for \(i'_c \) and \(r_{ic} \).

\[
i'_c = \alpha i'_e = v_s \frac{R_1||R_2}{R_s + R_1||R_2 r'_e + R_{te}} \frac{\alpha}{\alpha}
\]

\[
r_{ic} = \frac{r_0 + r'_e R_{te}}{1 - \alpha R_{te}/(r'_e + R_{te})}
\]

(c) Solve for \(v_o \) and \(A_v = v_o/v_s \).

\[
v_o = -i_{c(sc)} r_{ic} R_C||R_L = v_s \frac{R_1||R_2}{R_s + R_1||R_2 r'_e + R_{te}} \frac{\alpha}{\alpha} \times -r_{ic} R_C||R_L
\]

\[
A_v = \frac{v_o}{v_s} = \frac{v_{ib}}{v_s} \times \frac{i'_e}{i'_e} \times \frac{v_o}{i'_c}
\]

(d) Solve for \(r_{out} \).

\[
r_{out} = r_{ic} R_C
\]

(d) Solve for \(r_{ib} \) and \(r_{in} \). Because the base node is absorbed, use the formula for \(r_{ib} \).

\[
r_{ib} = r_x (1 + \beta) (r_e + R_{te}) \quad r_{in} = R_1||R_2||r_{ib}
\]

Example 2 Use the simplified T-model solutions to calculate the values of \(A_v \), \(r_{in} \), and \(r_{out} \) for Example 1.

\[
A_v = 0.916 \times (6.343 \times 10^{-3}) \times (-3.451 \times 10^3) = -20.05
\]

\[
r_{ib} = 1.103 \, \text{kΩ} \quad r_{in} = 9.173 \, \text{kΩ}
\]

\[
r_{ic} = 138.6 \, \text{kΩ} \quad r_{out} = 4.171 \, \text{kΩ}
\]
(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the BJT with the π model as shown in Fig. 7.

\[v_{tb} = i_b (R_{tb} + r_x) + v_{\pi} + i_c R_{te} = \frac{v_c'}{\beta} (R_{tb} + r_x) + \frac{v_c'}{g_m} + \frac{v_c'}{\alpha} R_{te} \implies i_c' = \frac{v_{tb}}{\beta} + \frac{1}{g_m} + \frac{R_{te}}{\alpha} \]

\[r_{ic} = \frac{r_0 + v_{e'} R_{te}}{1 - \alpha R_{te}/(r_{e'} + R_{te})} \]

(b) Solve for \(i_c' \) and \(r_{ic} \).

(c) Solve for \(v_o \).

\[v_o = i_c' R_C || R_L = \frac{v_{tb}}{\beta} + \frac{1}{g_m} + \frac{R_{te}}{\alpha} \times -r_{ic} || R_C || R_L \]

\[= v_o' \frac{R_1 || R_2}{R_s + R_1 || R_2} \frac{1}{\beta} \frac{1}{R_{tb} + r_x} + \frac{1}{g_m} + \frac{R_{te}}{\alpha} \times -r_{ic} || R_C || R_L \]

(d) Solve for the voltage gain.

\[A_v = \frac{v_o}{v_s} = \frac{R_1 || R_2}{R_s + R_1 || R_2} \frac{1}{\beta} \frac{1}{R_{tb} + r_x} + \frac{1}{g_m} + \frac{R_{te}}{\alpha} \times -r_{ic} || R_C || R_L \]

This is of the form

\[A_v = \frac{v_o}{v_s} = \frac{v_{tb}}{v_s} \times \frac{i_c'}{v_{tb}} \times \frac{v_o}{i_c'} \]

(e) Solve for \(r_{ib} \) and \(r_{in} \).

\[v_b = i_b (r_x + r_{\pi}) + i_c' R_{te} = i_b (r_x + r_{\pi}) + (1 + \beta) i_b R_{te} = i_b [r_x + r_{\pi} + (1 + \beta) R_{te}] \]

\[r_{ib} = \frac{v_b}{i_b} = r_x + r_{\pi} + (1 + \beta) R_{te} \]
\[r_{in} = R_1 \| R_2 \| r_{ib} \]

(f) Solve for \(r_{out} \).

\[r_{out} = r_{ic} \| R_C \]

Example 3 Use the \(\pi \)-model solutions to calculate the values of \(A_v, r_{in}, \) and \(r_{out} \) for Example 1.

\[g_m = 0.0837 \quad r_\pi = 1.183 \, \text{k}\Omega \]

\[A_v = 0.916 \times (6.343 \times 10^{-3}) \times (-3.451 \times 10^3) = -20.05 = -20.05 \]

\[r_{ib} = 11.03 \, \text{k}\Omega \quad r_{in} = 9.173 \, \text{k}\Omega \]

\[r_{ic} = 138.6 \, \text{k}\Omega \quad r_{out} = 4.171 \, \text{k}\Omega \]

T Model Solution

(a) After making the Thévenin equivalent circuits looking out of the base and emitter, replace the BJT with the T model as shown in Fig. 8.

\[\text{Figure 8: T model circuit.} \]

(b) Solve for \(\dot{i}_c' \) and \(r_{ic} \).

\[v_{tb} = i_b (R_{tb} + r_x) + i_e' (r_e + R_{te}) = \frac{\dot{i}_c'}{\beta} (R_{tb} + r_x) + \frac{\dot{i}_e'}{\alpha} (r_e + R_{te}) \implies \dot{i}_c' = \frac{v_{tb}}{R_{tb} + r_x} + \frac{r_e + R_{te}}{\alpha} \]

\[r_{ic} = \frac{r_0 + r_e' \| R_{te}}{1 - \alpha R_{te} / (r_e + R_{te})} \]

(c) Solve for \(v_o \).

\[v_o = -\dot{i}_c' R_C \| R_L = \frac{v_{tb}}{R_{tb} + r_x} + \frac{r_e + R_{te}}{\alpha} \times -r_{ic} \| R_C \| R_L \]

\[= v_s \frac{R_1 \| R_2}{R_s + R_1 \| R_2} \frac{1}{\frac{R_{tb} + r_x}{\beta} + \frac{r_e + R_{te}}{\alpha}} \times -r_{ic} \| R_C \| R_L \]
(d) Solve for the voltage gain.

\[A_v = \frac{v_o}{v_s} = \frac{R_1 R_2}{R_s + R_1 R_2} \frac{1}{\beta} + \frac{r_x + R_{te}}{\alpha} \times -r_{ic} R_C R_L \]

Note that this is of the form

\[A_v = \frac{v_o}{v_s} = \frac{v_{tb}}{v_s} \times \frac{i_c'}{i_c} \times \frac{v_o}{v_t} \]

(e) Solve for \(r_{ib} \) and \(r_{in} \).

\[v_b = i_b r_x + i_c' (r_e + R_{te}) = i_b r_x + (1 + \beta) i_b (r_e + R_{te}) = i_b [r_x + (1 + \beta) (r_e + R_{te})] \]

\[r_{ib} = \frac{v_b}{i_b} = r_x + (1 + \beta) (r_e + R_{te}) \]

\[r_{in} = R_1 R_2 r_{ib} \]

(f) Solve for \(r_{out} \).

\[r_{out} = r_{ic} R_C \]

Example 4 Use the T-model solutions to calculate the values of \(A_v \), \(r_{in} \), and \(r_{out} \) for Example 1.

\[A_v = 0.916 \times (6.343 \times 10^{-3}) \times (-3.451 \times 10^3) = -20.05 = -20.05 \]

\[r_{ib} = 11.03 \text{ k\Omega} \quad r_{in} = 9.173 \text{ k\Omega} \]

\[r_{ic} = 138.6 \text{ k\Omega} \quad r_{out} = 4.171 \text{ k\Omega} \]