
Ideal Op Amp Circuits

The operational amplifier, or op amp as it is commonly called, is a fundamental active element of analog
circuit design. It is most commonly used in amplifier and analog signal processing circuits in the frequency
band from 0 to 100 kHz. High-frequency op amps are used in applications that require a bandwidth into the
MHz range. The first op amps were vacuum-tube circuits which were developed for use in analog computers.
Modern op amps are fabricated as integrated circuits that bare little resemblance to the early circuits. This
chapter covers some of the basic applications of the op amp. It is treated as an ideal circuit element without
regard to its internal circuitry. Some of the limitations imposed by non-ideal characteristics are covered in
the following chapter.

The notation used here is as follows: Total quantities are indicated by lower-case letters with upper-
case subscripts, e.g. vI , iO, rIN . Small-signal quantities are indicated by lower-case letters with lower-case
subscripts, e.g. vi, io, rout. Transfer function variables and phasors are indicated by upper case letters and
lower-case subscripts, e.g. Vi, Io, Zin.

1.1 The Ideal Op Amp

The ideal op amp is a three terminal circuit element that is modeled as a voltage-controlled voltage source.
That is, its output voltage is a gain multiplied by its input voltage. The circuit symbol for the ideal op amp
is given in Fig. 1.1(a). The input voltage is the difference voltage between the two input terminals. The
output voltage is measured with respect to the circuit ground node. The model equation for the output
voltage is

vO = A (v+ − v−) (1.1)

where A is the voltage gain, v+ is the voltage at the non-inverting input, and v− is the voltage at the
inverting input. The controlled source model of the ideal op amp is shown in Fig. 1.1(b).

Figure 1.1: (a) Op-amp symbol. (b) Controlled-source model.

The terminal characteristics of the ideal op amp satisfy four conditions. These are as follows:

1. The current in each input lead is zero.

2. The output voltage is independent of the output current.
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3. The voltage gain A is independent of frequency.

4. The voltage gain A is very large, approaching infinity in the limit.

The first condition implies that the resistance seen looking into both input terminals is infinite. The
second implies that the voltage gain is independent of the output current. This is equivalent to the condition
that the output resistance is zero. The third implies that the bandwidth is infinite. The fourth implies that
the difference voltage between the two input terminals must approach zero if the output voltage is finite.

For it to act as an amplifier, the op amp must have feedback applied from its output to its inverting
input. That is, part of the output voltage must be sampled by a network and fed back into the inverting
input. This makes it possible to design an amplifier so that its gain is controlled by the feedback network.

To illustrate how feedback affects the op amp, consider the circuits shown in Fig. 1.2. The networks
labeled N1 and NF , respectively, are the input and feedback networks. The op amp of Fig. 1.2(a) has
positive feedback whereas the op amp of Fig. 1.2(b) has negative feedback. Let a unit step of voltage be
applied to the input of each circuit at t = 0. The arrows in the figures indicate the directions in which the
input voltages change, i.e. each input voltage increases. For the circuit of Fig. 1.2(a), the voltage increase
at vi is fed through the N1 network to cause the voltage to increase at the v+ terminal. This is amplified by
a positive gain (+A) and causes the output voltage to increase. This is fed back through the NF network to
further increase the voltage at the v+ terminal. (The arrow for the feedback voltage is enclosed in parentheses
to distinguish it from the arrow for the initial increase in voltage.) This causes the output voltage to increase
further, causing v+ to increase further, etc. It follows that the circuit is not stable with positive feedback.

Figure 1.2: (a) Op amp with positive feedback. (b) Op amp with negative feedback.

For the circuit of Fig. 1.2(b), the voltage increase at the input is fed through the N1 network to cause
the voltage to increase at the v− terminal. This is amplified by a negative gain (−A) and causes the output
voltage to decrease. This is fed back through the NF network to cause the voltage at the v− input to
decrease, thus tending to cancel the initial increase caused by the input voltage. Because the v− voltage is
decreased by the feedback, it follows that vO is decreased also. Thus the circuit is stable.

When negative feedback is used in an op amp circuit, the feedback tends to force the voltage at the v−
input to be equal to the voltage at the v+ input. It is said that a virtual short circuit exists between the
two inputs. A virtual short circuit between two nodes means that the voltage difference between the nodes
is zero but there is no branch for a current to flow between the nodes. There is no virtual short circuit
between the v− and v+ inputs to an op amp which has positive feedback. If it has both negative and positive
feedback, the virtual short circuit exists if the negative feedback is greater than the positive feedback.

We have used the concept of signal tracing in the circuits of Fig. 1.2 to illustrate the effects of feedback.
Signal tracing is a simple concept which can be applied to any circuit to check for positive and negative
feedback. Circuits which have positive feedback are unstable in general and are not used for amplifier circuits.
With few exceptions, the circuits covered in this chapter have only negative feedback.
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1.2 Inverting Amplifiers

1.2.1 The Inverting Amplifier

Figure 1.3(a) shows the circuit diagram of an inverting amplifier. The input signal is applied through resistor
R1 to the inverting op amp input. Resistor RF is the feedback resistor which connects from the the output
to the inverting input. The circuit is called an inverting amplifier because its voltage gain is negative. This
means that if the input voltage is increasing or going positive, the output voltage will be decreasing or going
negative, and vice versa. The non-inverting input to the op amp is not used in the inverting amplifier circuit.
The figure shows this input grounded so that v+ = 0.

Figure 1.3: (a) Inverting amplifier. (b) Controlled-source model.

For the circuit of Fig. 1.3(a), the voltage at the inverting input is given by v− = −vO/A. For vO finite
and A → ∞, it follows that v− → 0. Even though the v− input is not grounded, it is said to be a virtual
ground because the voltage is zero, i.e. at ground potential. Because i− = 0, the sum of the currents into
the v− node through resistors R1 and RF must be zero, i.e. i1+ iF = 0, where i1 = vI/R1 and iF = vO/RF .
Thus we can write

i1 + iF = 0 =⇒ vI
R1

+
vO
RF

= 0 (1.2)

This relation can be solved for the voltage gain to obtain

vO
vI

= −RF
R1

(1.3)

The input resistance is calculated from the relation rin = vI/i1. Because v− = 0, it follows that

rin = R1 (1.4)

The output resistance is equal to the output resistance of the op amp so that

rout = 0 (1.5)

The controlled source model of the inverting amplifier is shown in Fig. 1.3(b).

Example 1 Design an inverting amplifier with an input resistance of 2 kΩ, an output resistance of 100Ω,
and an open-circuit voltage gain of −30 (an inverting decibel gain of 29.5dB).

Solution. The circuit diagram for the amplifier is given in Fig. 1.4(a). For an input resistance of 2 kΩ,
Eq. (1.4) gives R1 = 2kΩ. For a voltage gain of −30, it follows from Eq. (1.3) that RF = 60 kΩ. For an
output resistance of 100Ω, the resistor RO = 100Ω must be used in series with the output as shown in the
figure.

Example 2 Calculate the voltage gain of the circuit of Fig. 1.4(a) if a 1 kΩ load resistor is connected from
the output to ground. The circuit with the load resistor is shown in Fig. 1.4(b).
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Figure 1.4: (a) Circuit for Example 1. (b) Circuit for Example 2. (c) Circuit for Example 3.

Solution. The voltage gain decreases when RL is added because of the voltage drop across RO. By
voltage division, the gain decreases by the factor

RL
RO +RL

=
1000

1000 + 100
=

10

11

It follows that the loaded voltage gain is (10/11)× (−30) = −27.3 (an inverting decibel gain of 28.7dB).

Example 3 For the inverting amplifier circuit of Fig. 1.4(b), investigate the effect of connecting the feedback
resistor RF to the load resistor RL rather than to the op amp output terminal. The modified circuit is shown
in Fig. 1.4(c).

Solution. Because i1 + iF = 0, it follows that vI/R1 + vO/RF = 0. This gives the voltage gain vO/vI =
−RF/R1. Because this is independent of RL, it follows that the output resistance of the circuit is zero. Thus
the circuit looks like the original circuit of Fig. 1.4(b) with RO = 0. With RO �= 0, the op amp must put
out a larger voltage in order to maintain a load voltage that is independent of RO. Let v

′

O be the voltage at
the op amp output terminal in Fig. 1.4(c). By voltage division, the output voltage is given by

vO
v′O

=
RL‖RF

RL‖RF +RO

It follows that v′O is larger than vO by the factor 1 +RO/ (RL‖RF ). Because this is greater than unity, RO
causes the op amp to “work harder” to put out a larger output voltage. We conclude that a resistor should
not be connected in series between the op amp output terminal and the connection for the feedback resistor.

1.2.2 The Inverting Amplifier with T Feedback Network

If a high voltage gain is required from an inverting amplifier, Eq. (1.3) shows that either RF must be large,
R1 must be small, or both. If R1 is small, the input resistance given by Eq. (1.4) may be too low to meet
specifications. The inverting amplifier with a T feedback network shown in Fig. 1.5(a) can be used to obtain
a high voltage gain without a small value for R1 or very large values for the feedback resistors.
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Figure 1.5: (a) Inverting amplifier with a T feedback network. (b) Equivalent circuit for calculating vO.

The solution for the voltage gain is simplified by making a Thévenin equivalent circuit at the v− terminal
looking to the right through R2. The circuit is given in Fig. 1.5(b). Because i1 + iF = 0, it follows that

vI
R1

+
vOR3
R3 +R4

× 1

R2 +R3‖R4
= 0 (1.6)

This equation can be solved for the voltage gain to obtain

vO
vI

= −
[
R2
R1

+
R4
R1

(
1 +

R2
R3

)]
(1.7)

The output resistance of the circuit is zero. The input resistance is R1.

Example 4 For the inverting amplifier with a T feedback network in Fig. 1.5(a), specify the resistor values
which give an input resistance of 10 kΩ and a gain of −100. The maximum resistor value in the circuit is
limited to 100 kΩ.

Solution. To meet the input resistance specification, we have R1 = 10 kΩ. Let R2 = R4 = 100kΩ. It
follows from Eq. (1.7) that R3 is given by

R3 =
R2R4

(−vO/vI)R1 − (R2 +R4)

This equation gives R3 = 12.5 kΩ.

1.2.3 The Current-to-Voltage Converter

The circuit diagram of a current-to-voltage converter is shown in Fig. 1.6(a). The circuit is a special case
of an inverting amplifier where the input resistor is replaced with a short circuit. Because the v− terminal
is a virtual ground, the input resistance is zero. The output resistance is also zero. Because i1 + iF = 0 and
vO = iFRF , it follows that the transresistance gain is given by

vO
i1

= −RF (1.8)

Figure 1.6(b) shows the current-to-voltage converter with a current source connected to its input. Because
RS connects from a virtual ground to ground, the current through RS is zero. It follows that i1 = iS and
vO = −RF iS. Thus the output voltage is independent of RS.
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Figure 1.6: (a) Current-to-voltage converter. (b) Curcuit with an input current source.

1.3 Non-Inverting Amplifiers

1.3.1 The Non-Inverting Amplifier

Figure 1.7(a) shows the circuit diagram of a non-inverting amplifier. The input voltage vI is applied to the
non-inverting op amp input. A voltage divider consisting of resistors RF and R1 connects from the output
node to the inverting input. The circuit is called a non-inverting amplifier because its voltage gain is positive.
This means that if the input voltage is increasing or going positive, the output voltage will also be increasing
or going positive. If the circuit diagrams of the inverting and the non-inverting amplifiers are compared, it
can be seen that the circuits are the same if vI = 0. Thus the only difference between the two circuits is the
node at which the input voltage is applied.

Figure 1.7: (a) Non-inverting amplifier. (b) Controlled-source model.

For the circuit of Fig. 1.7(a), the voltage difference between the two op amp input terminals is given by
v+ − v− = vO/A. For vO finite and A→ ∞, it follows that v+ → v−. It is said that a virtual short circuit
exists between the two inputs because there is no voltage difference between the two terminals. For i− = 0,
the condition that v+ = v− requires vI and vO to satisfy the equation

v+ = v− =⇒ vI = vO
R1

RF +R1
(1.9)

where voltage division has been used for v−. This can be solved for the voltage gain to obtain

vO
vI

= 1 +
RF
R1

(1.10)

The input and output resistances are given by

rin =∞ (1.11)



1.3. NON-INVERTING AMPLIFIERS vii

rout = 0 (1.12)

The controlled source model for the non-inverting amplifier is shown in Fig. 1.7(b).

Example 5 Design a non-inverting amplifier which has an input resistance of 10 kΩ, an open-circuit voltage
gain of 20 (a decibel voltage gain of 26dB), and an output resistance of 600Ω. The feedback network is
specified to draw no more than 0.1mA from the output of the op amp when the open-circuit output voltage
is in the range −10V ≤ vO ≤ 10V.

Solution. The circuit diagram for the amplifier is shown in Fig. 1.8. To meet the input resistance
specification, we have Ri = 10kΩ. For the specified current in the feedback network, we must have 0.1mA ≤
10/ (RF +R1). If the equality is used, we obtain RF +R1 = 100kΩ. For the specified open-circuit voltage
gain, Eq. (1.10) gives 1 +RF/R1 = 20 or RF = 19R1. It follows that R1 = 5kΩ and RF = 95kΩ. To meet
the output resistance specification, we must have RO = 600Ω.

Figure 1.8: Circuit for Example 5.

Example 6 Examine the effect of a connecting a resistor between the v+ node and the v− node in the
non-inverting amplifier of the circuit for Example 5.

Solution. For an ideal op amp, the voltage difference between the v+ and v− terminals is zero. It follows
that a resistor connected between these nodes has no current flowing through it. Therefore, the resistor has
no apparent effect on the circuit. This conclusion applies also for the inverting amplifier circuit of Fig. 1.3.
With physical op amps, however, a resistor connected between the v+ and the v− terminals can affect the
performance of the circuit by reducing the effective open-loop gain A.

1.3.2 The Voltage Follower

The voltage follower or unity-gain buffer is a unity-gain non-inverting amplifier. The circuit diagram is shown
in Fig. 1.9(a). Compared to the non-inverting amplifier of Fig. 1.7(a), the feedback resistor RF is replaced
by a short circuit and resistor R1 is omitted. Because the output node is connected directly to the inverting
input instead of through a voltage divider, the circuit is said to have 100% feedback. Because v+ = v−, it
follows that vO = vI . Therefore, the circuit has unity voltage gain. The voltage follower is often used to
isolate a low resistance load from a high output resistance source. That is, the voltage follower supplies the
current to drive the load while drawing no current from the input circuit.

Example 7 Figure 1.9(b) shows a source connected to a load with a voltage follower. It is given that
RS = 10 kΩ and RL = 100Ω. (a) Calculate vO. (b) Calculate vO if the voltage follower is removed and the
source connected to the load.

Solution. (a) With the voltage follower, there is no current through RS so that the voltage at the op
amp input is vS. It follows that vO = vS. (b) If the voltage follower is removed and the source is connected
directly to the load, vO is given by vO = vSRL/ (RS +RL) = vS/101. This is a decrease in output of
20 log 101 = 40.1 dB. This example illustrates how a unity gain amplifier can increase the gain of a circuit.
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Figure 1.9: (a) Voltage follower. (b) Circuit for Example 7.

1.3.3 Amplifier with Voltage and Current Feedback

Figure 1.10(a) shows the circuit diagram of a non-inverting amplifier in which the voltage fed back to the
inverting input of the op amp is a function of both the load voltage and the load current. To solve for the
output voltage, it is convenient to first form the Thévenin equivalent circuit seen by the load resistor RL.
The circuit is shown in Fig. 1.10(b). It consists of a voltage source in series with a resistor. The voltage
source has a value equal to the open-circuit load voltage, i.e. the output voltage with RL →∞. The resistor
has a value equal to the ratio of the open-circuit load voltage to the short-circuit load current, i.e. the output
current with RL = 0.

Figure 1.10: (a) Non-inverting amplifier with voltage and current feedback. (b) Thévenin equivalent circuit
seen by the load.

With RL =∞, the open-circuit load voltage is given by vO(oc) = i1 (RF +R1). Because there is a virtual
short circuit between the v+ and the v− terminals, it follows that i1 = vI/ (R1 +R2). It follows that vO(oc)
can be written

vO(oc) = vI
R1 +RF
R1 +R2

(1.13)

With RL = 0, there can be no current through RF or R1 so that vI = v− = iO(sc)R2. Thus iO(sc) is given
by

iO(sc) =
vI
R2

(1.14)

The output resistance of the circuit is given by

rout =
vO(oc)
iO(sc)

= R2
R1 +RF
R1 +R2

(1.15)

By voltage division, it follows from Fig. 1.10(b) and Eq. (1.13) that the output voltage can be written

vO = vO(oc) ×
RL

rout +RL
= vI

R1 +RF
R1 +R2

× RL
rout +RL

(1.16)
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1.3.4 The Negative Impedance Converter

Although it is not an amplifier, the negative impedance converter is an application of the non-inverting
configuration. For the circuit in Fig. 1.11(a), the resistor R bridges the input and output terminals of a
non-inverting amplifier. We can write

rin =
vI
i1

(1.17)

i1 =
vI − vO
R

(1.18)

vO =

(
1 +

RF
R1

)
vI (1.19)

Solution for rin yields

rin = −R1
RF

R (1.20)

Thus the circuit has a negative input resistance.

Figure 1.11: Negative impedance converters. (a) Negative input resistance. (b) Negative input capacitance.

A resistor in parallel with another resistor equal to its negative is an open circuit. It follows that the
output resistance of a non-ideal current source. i.e. one having a non-infinite output resistance, can be made
infinite by adding a negative resistance in parallel with the current source. Negative resistors do not absorb
power from a circuit. Instead, they supply power. For example, if a capacitor with an initial voltage on it is
connected in parallel with a negative resistor, the voltage on the capacitor will increase with time. Relaxation
oscillators are waveform generator circuits which use a negative resistance in parallel with a capacitor to
generate ac waveforms.

The resistor is replaced with a capacitor in Fig. 1.11(b). In this case, the input impedance is

Zin = −R1
RF

1

jωC
= jω

R1
ω2RFC

= jωLeq (1.21)

It follows that the input impedance is that of a frequency dependent inductor given by

Leq =
R1

ω2RFC
(1.22)

1.4 Summing Amplifiers

1.4.1 The Inverting Summer

The inverting summer is the basic op amp circuit that is used to sum two or more signal voltages, to sum a
dc voltage with a signal voltage, etc. An inverting summer with four inputs is shown in Fig. 1.12(a). If all
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inputs are grounded except the vIj input, where j = 1, 2, 3, or 4, Eq. (1.3) for the inverting amplifier can
be used to write vO = − (RF /Rj) vIj . It follows by superposition that the total output voltage is given by

vO = −RF
R1
vI1 −

RF
R2
vI2 −

RF
R3
vI3 −

RF
R4
vI4 (1.23)

The input resistance to the jth input is Rj . The output resistance of the circuit is zero.

Figure 1.12: (a) Four input inverting summer. (b) Circuit for Example8.

Example 8 Design an inverting summer which has an output voltage given by

vO = 3− 2vI

Assume that +15V and −15V supply voltages are available.

Solution. The output contains a dc term of +3V. This can be realized by using the −15V supply as one
input. The circuit is shown in Fig. 1.12(b). For the specified output, we can write (−15)×(−RF/R1) = 3 and
−RF/R2 = −2. If RF is chosen to be 3 kΩ, it follows that R1 = 15 kΩ and R2 = 1.5 kΩ.

1.4.2 The Non-Inverting Summer

A non-inverting summer can be realized by connecting the inputs through resistors to the input terminal of
a non-inverting amplifier. Unlike the inverting amplifier, however, the input resistors do not connect to a
virtual ground. Thus a current flows in each input resistor that is a function of the voltage at all inputs. This
makes it impossible to define the input resistance for any one input unless all other inputs are grounded.
The circuit diagram for a four-input non-inverting summer is shown in Fig. 1.13(a). To solve for the output
voltage, it is convenient to first make Norton equivalent circuits at the v+ terminal for each of the inputs.
The circuit is shown in Fig. 1.13(b).

Eq. (1.10) can be used to write the equation for vO as follows:

vO = v+

(
1 +

RF
R6

)

=

(
vI1
R1

+
vI2
R2

+
vI3
R3

+
vI4
R4

)
(R1‖R2‖R3‖R4‖R5)

(
1 +

RF
R6

)
(1.24)

The output resistance of the circuit is zero. If the vI2 through vI4 inputs are grounded, the input resistance
to the vI1 node is given by

rin1 = R1 +R2‖R3‖R4‖R5 (1.25)

The input resistance to the other inputs can be written similarly.
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Figure 1.13: (a) Four input non-inverting summer. (b) Equivalent circuit for calculating vO.

Example 9 Design a two-input non-inverting summer which has an output voltage given by

vO = 8 (vI1 + vI2)

With either input grounded, the input resistance to the other input terminal is specified to be 10 kΩ. In
addition, the current which flows in the grounded input lead is to be 1/10 the current that flows in the
ungrounded lead.

Solution. The circuit is shown in Fig. 1.14. By symmetry, it follows that R2 = R1. For the input
resistance specification, we must have R1+R1‖R3 = 10 kΩ. If vI2 is grounded, i2 is given by current division
i2 = −i1R3/ (R3 +R1). For i2 = −i1/10, we have R3/ (R3 +R1) = 1/10. It follows from these two equations
that R3 = 10/9.9 kΩ = 1.01 kΩ and R1 = R2 = 9R3 = (10/1.1) kΩ = 9.09 kΩ.

Figure 1.14: Circuit for Example 9.

If vI1 = vI2 = vI , it follows that vO/vI = 16. Thus we can write the design equation

16 =
v+
vI
× vO
v+

=
R3

R3 +R1/2

(
1 +

RF
R4

)

It follows from this equation that 1+RF/R4 = 88. This can be achieved with R4 = 270Ω and RF = 23.5 kΩ.
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1.5 Differential Amplifiers

1.5.1 The Single Op Amp Diff Amp

A differential amplifier or diff amp is an amplifier which has two inputs and one output. When a signal is
applied to one input, the diff amp operates as a non-inverting amplifier. When a signal is applied to the
other input, it acts as an inverting amplifier. The circuit diagram of a single op amp diff amp is shown in
Fig. 1.15(a). Superposition can be used to write the equation for vO as follows:

vO = v+

(
1 +

RF
R3

)
− vI2

RF
R3

= vI1
R2

R1 +R2

(
1 +

RF
R3

)
− vI2

RF
R3

(1.26)

where Eqs. (1.3) and (1.10) have been used.

Figure 1.15: (a) Diff amp circuit. (b) Equivalent circuit for the special case of a true diff amp.

The output resistance of the diff amp is zero. The input resistance to the vI1 node is given by

rin1 = R1 +R2 (1.27)

The current i2 which flows in the vI2 input lead is a function of the voltage at the vI1 input. It is given by

i2 =
vI2 − v−
R3

=
1

R3

(
vI2 − vI1

R2
R1 +R2

)
(1.28)

where v− = v+ has been used. The input resistance to the vI2 input is given by rin2 = vI2/i2. It can
be seen that rin2 is a function of vI1. For example, vI1 = 0 gives rin2 = R3, vI1 = −vI2 gives rin2 =
R3 (R1 +R2) / (R1 + 2R2), vI1 = +vI2 gives rin2 = R3 (1 +R2/R1), etc.

1.5.2 The True Diff Amp

The output voltage of a true diff amp is zero if vI1 = vI2. It follows from Eq. (1.26) that the condition for
a true diff amp is

R2
R1

=
RF
R3

(1.29)

To achieve this condition, it is common to make R1 = R3 and R2 = RF . In this case, the output voltage
can be written

vO =
RF
R3

(vI1 − vI2) (1.30)

The controlled-source equivalent circuit of the single op amp true diff amp is shown in Fig. 1.15(b).
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Example 10 For the diff amp circuit of Fig. 1.15(a), it is given that R1 = R3 = 10 kΩ and R2 = RF =
20kΩ. Solve for the output voltage, the input resistance to the vI1 terminal, and the input resistance to the
vI2 terminal for the three cases: vI1 = 0, vI1 = −vI2, and vI1 = +vI2.

Solution. Because RF/R3 = R2/R1, the output voltage is given by Eq. (1.30). It follows that vO =
2 (vI1 − vI2). The input resistance to the vI1 node is 30 kΩ. As described above, the input resistance to the
vI2 terminal is a function of vI1. For vI1 = 0, it is 10 kΩ. For vI1 = −vI2, it is 6 kΩ. For vI1 = +vI2, it is
40 kΩ.

1.5.3 Differential and Common-Mode Voltage Gains

Figure 1.16 shows a single op amp diff amp circuit with three sources at its input. The two input voltages
are given by

vI1 = vCM +
vD
2

(1.31)

vI2 = vCM − vD
2

(1.32)

The voltage vCM is called the common-mode input voltage because it appears equally at both inputs. The
voltage vD is called the differential input voltage because one-half of its value appears at each input with
opposite polarities.

Figure 1.16: Diff amp with differential and common-mode input sources.

It is often convenient to analyze diff amp circuits by expressing the input voltages as common-mode and
differential components. The voltages vCM and vD can be expressed in terms of vI1 and vI2 as follows:

vD = vI1 − vI2 (1.33)

vCM =
vI1 + vI2

2
(1.34)

These two equations can be used to resolve any two arbitrary input voltages into differential and common-
mode components. For example, vI2 = 0 gives vD = vI1 and vCM = vI1/2, vI2 = −vI1 gives vD = 2vI1 and
vCM = 0, vI2 = vI1 gives vD = 0 and vCM = vI1, etc.

By Eq. (1.26), the output voltage of the diff amp in Fig. 1.16 can be written

vO =
(
vCM +

vD
2

) R2
R1 +R2

(
1 +

RF
R3

)
−
(
vCM − vD

2

) RF
R3

]

= vCM
R2

R1 +R2

(
1− RFR1

R2R3

)
+
vD
2

RF
R3

[
1 +

R2 (R3 +RF )

RF (R1 +R2)

]
(1.35)
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This equation can be used to define the differential and common-mode voltage gains, respectively, as follows:

Ad =
vO
vD

=
RF
2R3

[
1 +

R2 (R3 +RF )

RF (R1 +R2)

]
(1.36)

Acm =
vO
vCM

=
R2

R1 +R2

(
1− RFR1

R2R3

)
(1.37)

If RF/R2 = R3/R1, these equations give Ad = RF/R3 and Acm = 0.

1.5.4 The Common-Mode Rejection Ratio

For a true diff amp, the common-mode voltage gain is zero. In practice, it is difficult to achieve a common-
mode gain that is exactly zero because of resistor tolerances. A figure of merit for the true diff amp is
the ratio of its differential voltage gain to its common-mode voltage gain. This is called the common-mode
rejection ratio or CMRR. Ideally, it is infinite. The CMRR of the circuit in Fig. 1.16 is given by

CMRR =
Ad
Acm

=

RF
2R3

[
1 + R2(R3+RF )

RF (R1+R2)

]

R2
R1+R2

[
1− RFR1

R2R3

] (1.38)

This is often expressed in decibels by the relation 20 log (CMRR).

Example 11 For the diff amp in Fig. 1.17, solve for vO, the current i, the resistance seen by the generator,
vI1, vI2, and the common-mode input voltage.

Figure 1.17: Circuit for Example 11.

Solution. By Eq. (1.30), vO is given by

vO =
RF
R3
vD

Because there is a virtual short circuit between the inverting and the non-inverting op amp inputs, it follows
that i is given by

i =
vD
2R3

Thus the generator sees the resistance 2R3. To solve for vI1 and vI2, we can write

vI1 = i (R3 +RF ) =
vD
2R3

(R3 +RF ) =
vD
2

(
RF
R3

+ 1

)

vI2 = vI1 − vD =
vD
2

(
RF
R3

− 1

)
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The common-mode component of vI1 and vI2 is given by

vCM =
vI1 + vI2

2
=
RF
R3

× vD
2

=
v0
2

Thus the op amp forces a common-mode voltage at the two diff amp inputs that is equal to one-half the
output voltage.

1.5.5 The Switch Hitter

The single op amp diff amp circuit of Fig. 1.18(a) is known as a switch hitter. The signal applied to the
non-inverting op amp input is taken from the wiper of a potentiometer. To solve for the output voltage
as a function of the position of the wiper, we denote the potentiometer resistance from wiper to ground by
xRp, where 0 ≤ x ≤ 1. By voltage division, it follows that the voltage at the non-inverting op amp input
is v+ = xvI . The circuit is redrawn in Fig. 1.18(b) with separate sources driving the inverting and the
non-inverting inputs. By superposition of the two sources, the output voltage can be written

vO = 2v+ − vI = (2x− 1) vI (1.39)

where Eqs. (1.3) and (1.10) have been used. It follows that the voltage gain of the circuit is 2x− 1. This
has the values −1 for x = 0, 0 for x = 0.5, and +1 for x = 1. Thus the circuit gain can be varied from −1
through 0 to +1 as the position of the potentiometer wiper is varied.

Figure 1.18: (a) Switch hitter. (b) Equivalent circuit.

1.5.6 The Two Op Amp Diff Amp

A two op amp diff amp is shown in Fig. 1.19. By superposition, the output voltage of this circuit is given
by

vO = −RF2
R3

v01 −
RF2
R2

vI2 =
RF1RF2
R1R3

vI1 −
RF2
R2

vI2 (1.40)

where Eq. (1.3) has been used. The circuit operates as a true diff amp if either of two conditions is satisfied.
These are R1 = RF1 and R3 = R2 or R1 = R2 and RF1 = R3. Under either condition, the expression for
the output voltage reduces to

vO =
RF2
R2

(vI1 − vI2) (1.41)

The input resistance to the vI1 input is R1. The input resistance to the vI2 input is R2. The output resistance
is zero.

The two op amp diff amp has two advantages over the single op amp diff amp. First, the input resistance
to either input is not a function of the voltage at the other input. Thus the common-mode voltage at the
inputs cannot be a function of the output voltage as it is with the single op amp diff amp. Second, when
the circuit is used as a true diff amp, the differential voltage gain can be varied by varying a single resistor
without simultaneously changing the common-mode voltage gain. This resistor is RF2. The single op amp
diff amp does not have this feature.
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Figure 1.19: Two op amp diff amp.

Example 12 Design a two op amp diff amp which has a differential voltage gain of 20, a common-mode
voltage gain of 0, and an input resistance to each input of 10 kΩ.

Solution. For the circuit of Fig. 1.19, the input resistance specifications can be met withR1 = R2 = 10kΩ.
For the differential gain specification, it follows from Eq. (1.41) that RF2/R2 = 20. Thus we must have
RF2 = 200 kΩ. For a common-mode gain of zero, we must have either R1 = RF1 and R3 = R2 or R1 = R2
and RF1 = R3. Because we have already specified that R1 = R2, we must have RF1 = R3. The value for
these resistors is arbitrary. We specify RF1 = R3 = 200 kΩ.

1.5.7 The Instrumentation Amplifier

The diff amp circuit of Fig. 1.20 is known as an instrumentation amplifier. In some applications, it is called
an active transformer. To solve for vO, we use superposition of the inputs vI1 and vI2. With vI2 = 0, the
v− terminal of op amp 2 is at virtual ground and op amp 1 operates as a non-inverting amplifier. By Eq.
(1.10), its output voltage is given by

vO1 =

(
1 +

RF1
R1

)
vI1 (1.42)

Because there is a virtual short circuit between the v+ and v− inputs of op amp 1, the voltage at the lower
node of R1 is vI1. It follows that op amp 2 operates as an inverting amplifier. By Eq. (1.3), its output
voltage is given by

vO2 = −RF1
R1

vI1 (1.43)

Op amp 3 operates as a true diff amp. By Eq. (1.30), its output voltage is given by

vO =
RF2
R2

(vO1 − vO2) =
RF2
R2

(
1 + 2

RF1
R1

)
vI1 (1.44)

Similarly, for vI1 = 0, vO is given by

vO = −RF2
R2

(
1 + 2

RF1
R1

)
vI2 (1.45)

By superposition, the total output voltage is

vO =
RF2
R2

(
1 + 2

RF1
R1

)
(vI1 − vI2) (1.46)

This is the voltage output of a true diff amp. The input resistance to each input of the amplifier is infinite.
The output resistance is zero.
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Figure 1.20: Instrumentation amplifier.

The instrumentation amplifier can be thought of as the cascade connection of two amplifiers. The first
stage consists of op amps 1 and 2. Let its voltage gain be denoted by A1. The second stage consists of op
amp 3. Let its voltage gain be denoted by A2. The two gains are given by

A1 =
vO1 − vO2
vI1 − vI2

= 1 + 2
RF1
R1

(1.47)

A2 =
vO

vO1 − vO2
=
RF2
R2

(1.48)

It can be seen that A1 represents the ratio of a differential output voltage to a differential input voltage.
The instrumentation amplifier is used in applications where a true diff amp is required with a very

high common-mode rejection ratio. A potentiometer connected as a variable resistor in series with R1 can
be used to adjust the voltage gain without simultaneously changing the common-mode rejection ratio. A
potentiometer connected as a variable resistor in series with R3 can be used to optimize the CMRR. To do
this experimentally, the two inputs are connected together and a common-mode signal voltage applied. The
potentiometer in series with R3 is adjusted for minimum output voltage.

Example 13 Design an instrumentation amplifier which has a differential voltage gain of 100 (a decibel
gain of 40dB) and a common-mode voltage gain of zero.

Solution. The gain of 100 must be divided between the two stages of the circuit. It is convenient to give
the input stage, consisting of op amps 1 and 2, a gain of 10 and the second stage, consisting of op amp 3, a
gain of 10. Using Eqs. (1.47) and (1.48), we can write the two design equations

1 + 2
RF1
R1

= 10 and
RF2
R2

= 10

With two equations and four unknowns, it is necessary to assign values to two of the resistors. Let RF1 =
RF2 = 10kΩ. It follows that R2 = 1kΩ and R1 = (10/4.5) kΩ = 2.22 kΩ.

1.5.8 The Differential Output Amplifier

Figure 1.21 shows the circuit diagram of a differential output amplifier. This circuit has two output voltages
which have opposite polarities. That is, if vO1 is positive, vO2 will be negative, and vice versa. Because the
lower node of resistor R1 is at virtual ground, Eq. (1.10) can be used to write for vO1

vO1 =

(
1 +

RF1
R1

)
vI (1.49)
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Because there is a virtual short between the inverting and non-inverting inputs to op amp 1, the upper node
of R1 sees the input voltage vI . Thus Eq. (1.3) can be use to write for vO2

vO2 = −RF2
R1

vI (1.50)

Figure 1.21: Differential output amplifier.

In most applications of the differential output amplifier, the condition vO2 = −vO1 is desired. When this
is satisfied, the amplifier is said to be a balanced differential output amplifier. This requires the condition
1 +RF1/R1 = RF2/R1 which reduces to

RF1 = RF2 −R1 (1.51)

In this case, the output voltages can be written

vO1 = −vO2 =
RF2
R1

vI (1.52)

The differential output voltage is given by

vO1 − vO2 =
2RF2
R1

vI (1.53)

Example 14 Design a balanced differential output amplifier with an open-circuit voltage gain of 4, an input
resistance of 10 kΩ, and a balanced output resistance of 600Ω. The amplifier is to drive a 600Ω load. If the
maximum peak output voltage from each op amp is ±12V, calculate the maximum peak load voltage and the
output level in dBm for a sine wave input signal. (The dBm is the decibel output power referenced to the
power Pref = 1mW.)

Solution. The circuit is shown in Fig. 1.22. For the input resistance specification, we have Ri = 10kΩ.
For an open-circuit voltage gain of 4, it follows from Eq. (1.53) that 2RF2/R1 = 4. This can be satisfied by
choosing RF2 = 20 kΩ and R1 = 10 kΩ. Eq. (1.51) gives RF1 = 10 kΩ. To achieve a 600Ω balanced output
resistance, we must have RO1 = RO2 and RO1 + RO2 = 600. It follows that RO1 = RO2 = 300Ω. If the
voltage output of op amp 1 peaks at +12V, the voltage output from op amp 2 peaks at −12V and the peak
load voltage is vP = 24× 600/ (600 + 600) = 12V, where voltage division has been used. The output level
in dBm is given by

Output Level = 10 log

(
v2P/2RL
Pref

)
= 10 log

(
122/1200

0.001

)
= 20.8dBm
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Figure 1.22: Circuit for Example 14.

1.6 Op Amp Differentiators

1.6.1 The Ideal Differentiator

A differentiator is a circuit which has an output voltage that is proportional to the time derivative of its
input voltage. Fig. 1.23 gives the circuit diagram of an op amp differentiator. The circuit is similar to the
inverting amplifier in Fig. 1.3 with the exception that resistor R1 is replaced by a capacitor. It follows that
Eq. (1.3) can be used to solve for the voltage gain transfer function of the differentiator by replacing R1
with the complex impedance of the capacitor. The voltage gain transfer function is given by

Vo
Vi

= − RF
(1/C1s)

= −RFC1s (1.54)

Figure 1.23: Ideal differentiator.

Because a multiplication by s in the complex frequency domain is equivalent to a differentiation in the
time domain, it follows from the above equation that the time domain output voltage is given by

vO (t) = −RFC1
dvI (t)

dt
(1.55)

Thus the circuit has the transfer function of an inverting differentiator with the gain constant RFC1. Because
the gain constant has the units of seconds, it is called the differentiator time constant. The output resistance
of the circuit is zero. The input impedance transfer function is that of the capacitor C1 to virtual ground
given by

Zin =
1

C1s
(1.56)

With s = jω, it follows that |Zin| → 0 as ω becomes large. This is a disadvantage because a low input
impedance can cause large currents to flow in the input circuit.



xx IDEAL OP AMP CIRCUITS

1.6.2 The Modified Differentiator

With s = jω, it follows from Eq. (1.54) that the magnitude of the voltage gain of the differentiator is ωRFC1.
For large ω, the gain can get very high. This is a disadvantage in circuits where out-of-band high-frequency
noise can be a problem. To limit the high-frequency gain, a resistor can be used in series with C1 as shown
in Fig. 1.24(a). This also has the advantage that the high-frequency input impedance does not approach
zero. At high frequencies where C1 is a short, the gain magnitude is limited to the value RF/R1 and the
input impedance approaches R1. The voltage gain transfer function of the circuit with R1 is given by

Vo
Vi

= − RF
R1 + 1/C1s

= −RFC1s×
1

1 +R1C1s
(1.57)

This is of the form of the transfer function of a differentiator multiplied by the transfer function of a low-pass
filter which has a pole time constant R1C1.

Figure 1.24: (a) Modified differentiator. (b) Bode plot for |Vo/Vi|.

The Bode magnitude plot for the transfer function of Eq. (1.57) is given in Fig. 1.24(b). For ω <<
1/R1C1, the asymptotic plot exhibits a slope of +1 dec/dec which is the proper slope for a differentiator. In
this band, the voltage gain is given by Vo/Vi ∼= −jωRFC1. At ω = 1, the magnitude of the gain is RFC1.
For ω >> 1/R1C1, the asymptotic slope is 0 and the magnitude of the gain shelves at the value RF/R1. It
follows that the circuit with R1 acts as a differentiator only for frequencies such that ω << 1/R1C1. The
input impedance transfer function of the circuit with R1 is given by

Zin = R1 +
1

C1s
= R1 ×

1 +R1C1s

R1C1s
(1.58)

This is of the form of a constant multiplied by the reciprocal of a high-pass transfer function. For s = jω,
it follows that |Zin| → R1 as ω becomes large.

Example 15 Design a modified differentiator which has a time constant of 10ms and a pole frequency of
1 kHz. For a 1V peak sine-wave input signal at 100Hz, calculate the peak sine wave output voltage and the
relative phase of the output voltage.

Solution. The circuit is shown in Fig. 1.24(a). For the gain constant specification, we must have
RFC1 = 0.01. If we let C1 = 0.1µF, it follows that RF = 100 kΩ. For the pole frequency of 1000Hz, we
must have R1C1 = 1/2π1000. This gives R1 = 10, 000/2π = 1.59 kΩ. From Eq. (1.57), the voltage gain
magnitude at f = 100Hz is given by

∣∣∣∣
Vo
Vi

∣∣∣∣ =
∣∣∣∣−

RFC1 (j2π100)

1 + j2π100R1C1

∣∣∣∣ =
0.01× 2π100√

1 + 0.12
= 6.25
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For a 1V peak input sine wave at 100Hz, it follows that the peak output voltage is 6.25V. It follows from
Eq. (1.57) that the phase of the output signal with respect to the input signal is given by

ϕ = +90o − tan−1 (2π100R1C1) = 84.3 ◦

A perfect differentiator would have a phase of +90 ◦. Thus there is a phase error of −5.7 ◦. Note that
the negative sign in Eq. (1.57) does not affect the phase. This is because a negative sign indicates an
inversion whereas a phase shift is associated with a shift in time. If a sine wave is observed on the screen
of an oscilloscope, an inversion would flip the sine wave about the time axis. A phase shift would shift the
position of the zero crossings along the time axis.

1.7 The Integrator

1.7.1 The Ideal Inverting Integrator

An integrator is a circuit which has an output voltage that is proportional to the time integral of its input
voltage. The circuit for the integrator can be obtained by interchanging the resistor and the capacitor in the
differentiator of Fig. 1.23. The circuit is shown in Fig. 1.25. The voltage gain transfer function is obtained
from Eq. (1.3) by replacing RF with the complex impedance of the capacitor CF to obtain

Vo
Vi

= −(1/CF s)

R1
= − 1

R1CF s
(1.59)

Figure 1.25: Inverting integrator.

Because a division by s in the complex frequency domain is equivalent to an integration in the time
domain, it follows from this equation that the time domain output voltage is given by

vO (t) = − 1

R1CF

∫ t

−∞

vI (τ) dτ (1.60)

Thus the circuit has the transfer function of an inverting integrator with the gain constant 1/R1CF . Because
R1CF has the units of seconds, it is called the integrator time constant. The input resistance to the circuit
is R1. The output resistance is zero.

1.7.2 The Modified Inverting Integrator

At zero frequency, CF is an open circuit and the op amp in the integrator circuit loses feedback. For non-ideal
op amps, this can cause undesirable dc offset voltages at the output. To provide feedback at dc, a resistor
can be used in parallel with CF as shown in Fig. 1.26(a). At low frequencies where CF is an open circuit,
the magnitude of the voltage gain is limited to the value RF/R1. The transfer function for the voltage gain
of the integrator with RF is given by

Vo
Vi

= −RF‖ (1/CF s)
R1

= − 1

R1CF s
× RFCF s

1 +RFCF s
(1.61)
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where Eq. (1.3) has been used. This is of the form of the transfer function of an ideal integrator multiplied
by the transfer function of a high-pass filter which has the pole time constant RFCF . The Bode magnitude
plot for the transfer function is given in Fig. 1.26(b). For ω << 1/RFCF , the plot exhibits a slope of 0.
For ω >> 1/RFCF , the slope is −1 dec/dec which is the proper slope for an integrator. It follows that the
circuit with RF acts as an integrator only for frequencies such that ω >> 1/RFCF .

Figure 1.26: (a) Modified inverting integrator. (b) Bode magnitude plot for |Vo/Vi|.

Example 16 Design a modified integrator which has a time constant of 0.1 s and a pole frequency of 1Hz.
For a 1V peak sine-wave input signal at 10Hz, calculate the peak sine-wave output voltage and the relative
phase of the output voltage.

Solution. The circuit is shown in Fig. 1.26(a). For the time constant specification, we haveR1CF = 0.1. If
we take CF = 0.1µF, it follows that R1 = 1MΩ. For the pole frequency of 1Hz, we must have RFCF = 1/2π.
This gives RF = 1/

(
2π × 0.1× 10−6

)
= 1.59MΩ. From Eq. (1.61), the gain magnitude at f = 10Hz is

given by ∣∣∣∣
Vo
Vi

∣∣∣∣ =
∣∣∣∣−

1

j2π10R1CF
× j2π10RFCF

1 + j2π10RFCF

∣∣∣∣ =
1.59√
1 + 102

= 0.158

For a 1V peak input sine wave at 100Hz, it follows that the peak output voltage is 0.158V.

It follows from Eq. (1.61) that the phase of the output signal with respect to the input signal is given by

ϕ = − tan−1 (2π10RFCF ) = −84.3 ◦

A perfect integrator would have a phase of −90 ◦. Thus there is a phase error of +5.7 ◦. As is discussed in
Example 15, the negative sign in Eq. (1.61) indicates that the output signal is inverted with respect to the
input signal and does not represent a phase shift.

1.7.3 The Non-Inverting Integrator

The circuit diagram of a non-inverting integrator is shown in Fig. 1.27(a). The voltage output from the op
amp is fed back to both its inverting input and to its non-inverting input. Thus the circuit has both positive
and negative feedback. To solve for the voltage gain transfer function, it is convenient to make two Norton
equivalent circuits at the V+ node, one looking toward the input through the left R and the other looking
toward the output through the right R. The circuit obtained is shown in Fig. 1.27(b), where the two parallel
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resistors are combined into a single resistor of value R/2. Because there is a virtual short between the V+
and the V− inputs, we can write

Vo
2

=

(
Vi
R

+
Vo
R

)(
R

2
‖ 1

Cs

)
= (Vi + Vo)

1

1 +RCs/2
(1.62)

This equation can be solved for the voltage gain transfer function of the circuit to obtain

Vo
Vi

=
2

RCs
(1.63)

This is the transfer function of a non-inverting integrator with the gain constant 2/RC. The time constant
of the integrator is RC/2.

Figure 1.27: (a) Non-inverting integrator. (b) Equivalent circuit for calculating Vo. (c) Equivalent circuit
for Zin .

The input current in the circuit of Fig. 1.27(a) can be solved for as follows:

Ii =
Vi − V+
R

=
Vi − V−
R

=
Vi
R

(
1− 1

RCs

)
(1.64)

where V− = Vo/2 has been used. This equation can be solved for the input impedance transfer function to
obtain

Zin =
Vi
Ii

=
R
(
−R2Cs

)

R+ (−R2Cs) (1.65)

The equivalent circuit which has this impedance is a resistor R in parallel with a negative inductor −R2C.
The equivalent circuit is given in Fig. 1.27(c). Because the inductor is a short circuit at zero frequency, it
follows that the input impedance to the circuit is zero for a dc source.

Example 17 The non-inverting integrator of Fig. 1.27(a) has the circuit element values R = 1kΩ and C =
1µF. For a sine wave input signal, calculate the voltage gain of the circuit at the frequency f = 100Hz. In
addition, calculate numerical values for the circuit elements in the equivalent circuit for the input impedance.

Solution. The voltage gain at f = 100Hz is calculated from Eq. (1.63) as follows:

Vo
Vi

=
2

103 × 10−6
× j2π100 = −j3.17
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From Eq. (1.65), it follows that the input impedance circuit consists of a 1000Ω resistor to ground in parallel
with a negative inductor to ground having the value −10002 × 10−6 = −1H.

1.8 Low-Pass Amplifiers

1.8.1 The Inverting Low-Pass Amplifier

This section covers several of the many op amp circuits which have a voltage gain transfer function that is of
the form of single-pole low-pass and low-pass shelving transfer functions. Fig. 1.28(a) shows the circuit of an
inverting low-pass amplifier. The voltage gain is obtained from Eq. (1.3) by replacing RF with RF ‖ (1/CF s).
It is given by

Vo
Vi

= −RF‖ (1/CF s)
R1

= −RF
R1

× 1

1 +RFCF s
(1.66)

This is of the form of a gain constant −RF/R1 multiplied by a low-pass transfer function having a pole time
constant RFCF . The Bode magnitude plot for the transfer function is given in Fig. 1.28(b). The input
resistance of the circuit is R1. The output resistance is zero.

Figure 1.28: (a) Inverting low-pass amplifier. (b) Bode magnitude plot for |Vo/Vi|.

Example 18 Design an inverting low-pass amplifier circuit which has an input resistance of 10 kΩ, a low-
frequency voltage gain of −10, and a pole frequency of 10 kHz.

Solution. The circuit diagram of the amplifier is shown in Fig. 1.28(a). For an input resistance of 10 kΩ,
we have R1 = 10kΩ. The voltage gain transfer function is given by Eq. (1.66). For a low-frequency gain of
−10, we have RF = 10R1 = 100kΩ. For a pole frequency of 10 kHz, we have CF = 1/2π104RF = 159pF.

A second inverting low-pass amplifier circuit is shown in Fig. 1.29(a). The currents I1, I2, and IF are
given by

I1 =
Vi

R1 + (1/Cs) ‖R2
(1.67)

I2 = I1
1/Cs

R2 + 1/Cs
= I1

1

1 +R2Cs
(1.68)

IF =
Vo
RF

(1.69)

where it is assumed that the V− op amp input is at virtual ground and current division has been used for
I2. The voltage gain of the circuit can be obtained from the relation I2 + IF = 0 to obtain

Vo
Vi

= − RF
R1 +R2

× 1

1 +R1‖R2Cs
(1.70)
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This is of the form of a gain constant −RF / (R1 +R2) multiplied by a low-pass transfer function having a
pole time constant (R1‖R2)C. The Bode magnitude plot for the transfer function is given in Fig. 1.29(b).

Figure 1.29: (a) Inverting low-pass amplifier. (b) Bode magnitude plot for |Vo/Vi|. (c) Bode magnitude plot
for |Zin |.

The output resistance of the circuit is zero. The input impedance is given by

Zin = R1 +
1

Cs
‖R2 = (R1 +R2)

1 + (R1‖R2)Cs
1 +R2Cs

(1.71)

This transfer function is in the form of a low-pass shelving function having a pole time constant R2C and
a zero time constant (R1‖R2)C. The Bode magnitude plot of the impedance is given in Fig. 1.29(c). The
low-frequency impedance is R1 +R2. As frequency is increased, the impedance decreases and shelves at the
value R1.

Example 19 Specify the circuit element values for the circuit of Fig. 1.29(a) for an inverting voltage gain
of unity and a pole time constant of 75µs. What is the pole frequency in the voltage-gain transfer function?

Solution. Let C = 0.01µF and R2 = R1. It follows from Eq. (1.31) that (R1‖R2)C = (R1/2)C =
75 × 10−6. Solution for R1 and R2 yields R1 = R2 = 15kΩ. For an inverting voltage gain of unity,
we must have RF = R1 + R2 = 30 kΩ. The pole frequency in the transfer function has the frequency
f = 1/

(
2π75× 10−6

)
= 2.12 kHz.

1.8.2 The Non-Inverting Low-Pass Amplifier

Figure 1.30(a) shows a non-inverting low-pass amplifier consisting of a non-inverting amplifier with a RC
low-pass filter at its input. The voltage gain transfer function of the circuit is given by

Vo
Vi

=
V+
Vi
× Vo
V+

=
1/Cs

R+ 1/Cs

(
1 +

RF
R1

)
=

(
1 +

RF
R1

)
× 1

1 +RCs
(1.72)

where voltage division and Eq. (1.10) have been used. This is of the form of a gain constant 1 + RF/R1
multiplied by the transfer function of a low-pass filter having a pole time constant RC. The Bode magnitude
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plot for the transfer function is given in Fig. 1.30(b). The output resistance of the circuit is zero. The input
impedance is given by

Zin = R+
1

Cs
= R× 1 +RCs

RCs
(1.73)

This is of the form of a resistor R multiplied by the reciprocal of a high-pass transfer function.

Figure 1.30: (a) Non-inverting low-pass amplifier. (b) Bode magnitude plot for |Vo/Vi|.

Example 20 The non-inverting amplifier of Fig. 1.30(a) is to be designed for a voltage gain of 12. The
input low-pass filter is to have a cutoff frequency of 100 kHz. Specify the element values for the circuit.

Solution. To meet the cutoff frequency specification, it follows from Eq. (1.72) that RC = 1/
(
2π105

)
.

Either a value for R or a value for C must be specified before the other can be calculated. Let C = 510 pF.
It follows that R = 3.12 kΩ. For a gain of 12, we must have 1 + RF /R1 = 12. If we choose R1 = 1kΩ, it
follows that RF = 11kΩ.

1.8.3 The Non-Inverting Low-Pass Shelving Amplifier

The circuit diagram of a non-inverting low-pass shelving amplifier is shown in Fig. 1.31(a). The voltage
gain is obtained from Eq. (1.8) by replacing RF with RF‖ (1/CF s). It is given by

Vo
Vi

= 1 +
RF‖ (1/CF s)

R1
=

(
1 +

RF
R1

)
1 +RF ‖R1CF s

1 +RFCF s
(1.74)

This is of the form of a gain constant 1+RF/R1 multiplied by a low-pass shelving transfer function having a
pole time constant RFCF and a zero time constant (RF‖R1)CF . The Bode magnitude plot for the voltage
gain is shown in Fig. 1.31(b). The low-frequency gain is 1 + RF/R1. As frequency is increased, the gain
decreases and shelves at unity.

Example 21 The circuit of Fig. 1.31(a) is to be designed for a low-frequency gain of 2 (a 6dB boost). The
zero frequency in the transfer function is to be 100Hz. Specify the circuit element values and calculate the
frequency at which the voltage gain is 3 dB.

Solution. For a low-frequency gain of 2, it follows from Eq. (1.74) that 1 + RF/R1 = 2, which gives
RF = R1. For the zero in the transfer function to be at 100Hz, it follows that RF ‖R1CF = 1/ (2π100). If we
choose CF = 0.1µF, it follows that R1 = RF = 31.8 kΩ. With s = j2πf , the voltage gain transfer function
can be written

Vo
Vi

= 2
1 + jf/100

1 + jf/50
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Figure 1.31: (a) Non-inverting low-pass shelving amplifier. (b) Bode magnitude plot for |Vo/Vi|.

At the 3dB boost frequency, we have |Vo/Vi|2 = 1/2. This condition gives

1 + (f/100)2

1 + (f/50)2
=

1

2

This can be solved for f to obtain f = 100/
√

2 = 70.7Hz.

1.9 High-Pass Amplifiers

1.9.1 The Inverting High-Pass Amplifier

This section covers several of the many op amp circuits which have a voltage gain that is of the form of
high-pass and high-pass shelving transfer functions. Fig. 1.32(a) shows an inverting high-pass amplifier
circuit. The voltage gain is obtained from Eq. (1.3) by replacing R1 with R1 + 1/ (C1s). It is given by

Vo
Vi

= − RF
R1 + 1/ (C1s)

= −RF
R1

× R1C1s

1 +R1C1s
(1.75)

This is of the form of a gain constant −RF /R1 multiplied by a high-pass transfer function having a pole
time constant R1C1. The Bode magnitude plot for the voltage gain is given in Fig. 1.32(b). The output
resistance of the circuit is zero. The input impedance transfer function is given by

Zin = R1 +
1

C1s
= R1 ×

1 +R1C1s

R1C1s
(1.76)

This is of the form of a resistance R1 multiplied by the reciprocal of a high-pass transfer function.

Example 22 Design an inverting high-pass amplifier circuit which has a gain of −10 and a pole time
constant of 500µs. The input impedance to the circuit is to be 10 kΩ or higher. Calculate the lower half-
power cutoff frequency of the amplifier.

Solution. The circuit is shown in Fig. 1.32(a). The voltage-gain transfer function is given by Eq. (1.75).
For the gain specification, we must have RF/R1 = 10. For the pole time constant specification, we must
have R1C1 = 500 × 10−6. Because there are three unknowns and only two equations, one of the circuit
elements must be specified before the others can be calculated. Eq. (1.76) shows that the lowest value of
the input impedance is R1. Thus we must have R1 ≥ 10 kΩ. If R1 ≥ 10 kΩ, it follows that C1 ≤ 0.05µF.
Let us choose C1 = 0.033µF. It follows that R1 = 15.2 kΩ and R2 = 152kΩ. The lower half-power cutoff
frequency is f = 1/

(
2π × 500× 10−6

)
= 318Hz.
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Figure 1.32: (a) Inverting high-pass amplifier. (b) Bode magnitude plot for |Vo/Vi|.

1.9.2 The Non-Inverting High-Pass Amplifier

Figure 1.33(a) shows a non-inverting high-pass amplifier circuit. The voltage gain transfer function is given
by

Vo
Vi

=
V+
Vi
× Vo
V+

=
R

R+ 1/ (Cs)

(
1 +

RF
R1

)
=

(
1 +

RF
R1

)
× RCs

1 +RCs
(1.77)

where voltage division and Eq. (1.10) have been used. This is of the form of a gain constant (1 +RF/R1)
multiplied by a single-pole high-pass transfer function having a pole time constant RC. The Bode magnitude
plot for the voltage gain is given in Fig. 1.33(b). The output resistance of the circuit is zero. The input
impedance transfer function is given by

Zin = R+
1

Cs
= R× 1 +RCs

RCs
(1.78)

This is of the form of a resistance R multiplied by the reciprocal of a high-pass transfer function.

Figure 1.33: (a) Non-inverting high-pass amplifier. (b) Bode magnitude plot for |Vo/Vi|.

Example 23 Design a non-inverting high-pass amplifier which has a gain of 15 and a lower cutoff frequency
of 20Hz. The input resistance to the amplifier is to be 10 kΩ in its passband.

Solution. The circuit is shown in Fig. 1.33(a). In the amplifier passband, C is a short circuit. To meet
the input resistance specification, we must have R = 10 kΩ. The voltage-gain transfer function is given by
Eq. (1.77). For a lower half-power cutoff frequency of 20Hz, we must have RC = 1/ (2π20). Solution for
C yields C = 0.796 µF. For the gain specification, we must have 1 + RF/R1 = 15 or R1 = RF /14. If
RF = 56 kΩ, it follows that R1 = 4kΩ.
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1.9.3 The Non-Inverting High-Pass Shelving Amplifier

The circuit diagram of a non-inverting high-pass shelving amplifier is shown in Fig. 1.34(a). The voltage
gain is given by Eq. (1.10) with R1 replaced by R1 + 1/ (C1s). It follows that the gain can be written

Vo
Vi

= 1 +
RF

R1 + (1/C1s)
=

1 + (RF +R1)C1s

1 +R1C1s
(1.79)

This is of the form of a high-pass shelving transfer function having a pole time constant R1C1 and a zero
time constant (RF +R1)C1. The Bode magnitude plot for the voltage gain is shown in Fig. 1.34(b). It can
be seen from the figure that the gain at low frequencies is unity. At high frequencies, the gain shelves at
1 +RF/R1.

Figure 1.34: (a) Non-inverting high-pass shelving amplifier. (b) Bode magnitude plot for |Vo/Vi|.

Example 24 Design a high-pass shelving amplifier which has unity gain at low frequencies, a pole in its
transfer function with a time constant of 75µs, and a zero with a time constant of 7.5µs. What are the pole
and zero frequencies and what is the gain at high frequencies?

Solution. The circuit is shown in Fig. 1.34(a). The voltage-gain transfer function is given by Eq.
(1.79). For the pole time constant specification, we must have R1C1 = 7.5µs. For the zero time constant
specification, we must have (R1 +RF )C1 = 75µs. Because there are three circuit elements and only two
equations, we must specify one element in order to calculate the other two. Let C1 = 0.001µF. It follows that
R1 = 7.5 kΩ and R2 = 75kΩ− R1 = 67.5 kΩ. The zero frequency is fz = 1/

(
2π × 75× 10−6

)
= 2.12 kHz.

The pole frequency is fp = 1/
(
2π × 7.5× 10−6

)
= 21.2 kHz. The gain at high frequencies is 1 +RF/R1 =

1 + 67.5/7.5 = 10.

1.10 The Op Amp as a Comparator

1.10.1 The Inverting Comparator

A comparator is an active circuit element which has two input terminals and one output terminal. The
output voltage exhibits two stable states. The output state depends on the relative value of one input
voltage compared to the other input voltage. The op amp is often used as a comparator. Fig. 1.35(a) shows
the circuit diagram of an op amp used as an inverting comparator. The voltage applied to the non-inverting
input is the dc reference voltage VREF . The output voltage is given by

vO = A (VREF − vI) (1.80)
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where A is the voltage gain of the op amp. For an ideal op amp, we assume that A→∞. This implies that
vO →∞ for vI < VREF and vO →−∞ for vI > VREF . However, a physical op amp cannot have an infinite
output voltage. Let us denote the maximum value of the magnitude of the output voltage by VSAT . We call
VSAT the saturation voltage of the op amp.

Figure 1.35: (a) Inverting comparator. (b) Plot of vO versus vI .

For an ideal op amp that exhibits saturation of its output voltage, the output voltage of the inverting
comparator circuit in Fig. 1.35(a) can be written

vO = VSAT sgn (VREF − vI) (1.81)

where sgn(x) is the signum or sign function defined by sgn (x) = +1 for x > 0 and sgn (x) = −1 for x < 0.
The plot of vO versus vI for the circuit is given in Fig. 1.35(b).

1.10.2 The Non-Inverting Comparator

Fig. 1.36(a) shows the circuit diagram of an op amp used as a non-inverting comparator. The output voltage
of the circuit is given by

vO = VSAT sgn (vI − VREF ) (1.82)

The graph of vO versus vI is given in Fig. 1.36(b).

Figure 1.36: (a) Non-inverting comparator. (b) Plot of vO versus vI .

1.10.3 The Comparator with Positive Feedback or Schmitt Trigger

Positive feedback is often used with comparator circuits. The feedback is applied from the output to the
non-inverting input of the op amp. This is in contrast to the circuits covered in the preceding sections of
this chapter where feedback is applied to the inverting input. (The non-inverting integrator is an exception.
This circuit uses feedback to both op amp inputs.) Fig. 1.37(a) gives the circuit diagram of an inverting
op amp comparator with positive feedback. The circuit is also called a Schmitt trigger. It is named after
Otto H. Schmitt who was a graduate student when he invented it in 1934. The capacitor CF in the figure is
assumed to be an open circuit in the following. This capacitor is often used to improve the switching speed
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of a comparator by increasing the amount of positive feedback at high frequencies. It has no effect on the
input voltage at which the op amp switches states.

Figure 1.37: (a) Inverting comparator with positive feedback. (b) Plot of vO versus vI .

The output voltage from the circuit of Fig. 1.37(a) can be written

vO = VSAT sgn (v+ − vI) (1.83)

Because vO has the two stable states vO = +VSAT and vO = −VSAT , it follows that v+ can have two stable
states given by

VA = VREF
RF

RF +R1
− VSAT

R1
RF +R1

(1.84)

VB = VREF
RF

RF +R1
+ VSAT

R1
RF +R1

(1.85)

where superposition and voltage division have been used for each equation. For vI < VA, it follows that
vO = +VSAT . For vI > VB, it follows that vO = −VSAT . For VA < vI < VB, vO can have two stable states,
i.e. vO = ±VSAT . The graph of vO versus vI is given in Fig. 1.37(b).

The value of vO for VA < vI < VB depends on whether vI increases from a value less than VA or vI
decreases from a value greater than VB . That is, the circuit has memory. If vI < VA initially and vI begins
to increase, vO remains at the +VSAT state until vI becomes greater than VB. At this point vO switches to
the −VSAT state. If vI > VB initially and vI begins to decrease, vO remains at the −VSAT state until vI
becomes less than VA. Then vO switches to the +VSAT state. The path for vO on the graph in Fig. 1.37(b)
is indicated with arrows. The loop in the graph is commonly called a hysteresis loop.

Example 25 The Schmidt trigger circuit of Fig. 1.37(a) has the element values RF = 1MΩ and R1 =
33kΩ. If VREF = 3V and the op amp saturation voltage is VSAT = 12V, calculate the two threshold voltages
VA and VB.

Solution. By Eqs. (1.84) and (1.85), we have

VA = 3
1

1 + 0.033
− 12

0.033

1 + 0.033
= 2.52V

VB = 3
1

1 + 0.033
+ 12

0.033

1 + 0.033
= 3.29V


