ECE 3050 Analog Electronics Quiz 13 April 15, 2009

1 of 2. The figure shows a Wien Bridge oscillator that puts out a sine wave signal with no input signal.

(a) In words, how would you go about solving for the frequency at which this circuit would oscillate? Answer: Break the loop between V_o and C_2 , solve for the frequency at which the phase of the loop-gain transfer function is zero degrees, choose R_3 and R_F so that the loop gain is unity.

(b) One of the resistors in the circuit is to be varied electronically to maintain a constant amplitude sine wave at the op-amp output. If the value of the resistor increases as the amplitude of the output sine wave increases, which resistor would you vary? Explain your choice.

If $v_O(t)$ is increasing in amplitude, the gain of the op amp must be decreased to stabilize the amplitude. If the resistor increases in value, it should be where R_3 is in the circuit.

2 of 2. The block diagram of an oscillator which uses an inverting amplifier with a gain -K is shown. The feedback network has the transfer function

$$H\left(s\right) = \frac{1}{\left(1 + s/\omega_0\right)^3}$$

(a) Solve for the frequency at which the phase of the loop-gain transfer function -KH(s) is 0° (or any multiple of 360°).

Answer: The phase of $H(j\omega)$ must be -180° . This occurs when

$$\tan^{-1}\left(\frac{\omega}{\omega_0}\right) = 60^{\circ} \Longrightarrow \omega = \omega_0 \tan\left(60^{\circ}\right) = \omega_0 \sqrt{3}$$

(b) If the circuit is to oscillate at the frequency found in part (a), what must be the value of K?

At the oscillation frequency, $K |H(j\omega/\omega_0)| = K |1 + j\sqrt{3}|^{-3} = 1$ or $K = |1 + j\sqrt{3}|^3 = 8$.