The BJT - NPN Device

Modes of Operation

In the active mode, the B-E junction is forward biased. The C-B junction is reverse biased. The labeled current directions are for the active mode. For the PNP device, the current directions are reversed.
In the NPN device, the p type impurity doping in the base is very small compared to the n type impurity doping in the collector and emitter. For this reason, electrons are the majority current carriers. In the PNP device, holes are the majority current carriers.

NPN BJT in the Active Mode

![Diagram of NPN BJT in the Active Mode]

Electrons are emitted from the emitter region across the forward biased B-E junction into the base region. The E field across
the reverse biased CB junction attracts these electrons and they are collected by the collector. The fraction of collected electrons is denoted by α. Thus we have

$$I_c = \alpha I_E$$

$$I_B = I_E - I_c = (1-\alpha) I_E$$

$$\Rightarrow I_E = \frac{1}{1-\alpha} I_B$$

$$\Rightarrow I_c = \frac{\alpha}{1-\alpha} I_B$$

The current gain β is defined by

$$\beta = \frac{\alpha}{1-\alpha}$$

$$\Rightarrow I_c = \beta I_B = \alpha I_E$$
In general, we can write

\[i_C = \beta i_B = \alpha i_E \]

The Transfer Characteristics

These are plots of \(i_C \) versus \(V_{BE} \) for \(V_{CE} = \text{constant} \)

\[i_C = I_S e^{V_{BE}/V_T} \]

where \(I_S = I_{S_0} \left(1 + \frac{V_{CE}}{V_T} \right) = \text{constant} \)

Draw a tangent line at the point \((V_{BE}, i_C)\). The slope of the line can be used to relate changes in \(i_C \) to changes in \(V_{BE} \).
\[m = \frac{\partial I_C}{\partial V_{BE}} = I_s e^{V_{BE}/V_T} \times \frac{1}{V_T} \]

\[= \frac{I_C}{V_T} \]

\[\Rightarrow I_C = \frac{I_C}{V_T} V_{BE} \]

The output characteristics

These are plots of \(I_C \) versus \(V_{CE} \) for \(I_B = \text{constant} \).

\[I_C = \beta I_B = \beta_0 \left(1 + \frac{V_{CE}}{V_A} \right) I_B \]

![Diagram showing the relationship between \(I_C \) and \(V_{CE} \) with \(I_B \) increasing.](image)
Draw a tangent line at the point (V_{CE}, I_C). The slope of the line can be used to relate changes in I_C to changes in V_{CE}.

$$m = \frac{\Delta I_C}{\Delta V_{CE}} = \beta_0 \frac{1}{V_A} I_B$$

$$= \beta_0 \frac{1}{V_A} \frac{I_C}{\beta}$$

$$= \frac{\beta_0}{V_A} \frac{I_C}{\beta_0 (1 + \frac{V_{CE}}{V_A})}$$

$$= \frac{I_C}{V_A + V_{CE}}$$

$$\Rightarrow \frac{\Delta I_C}{\Delta V_{CE}} = \frac{I_C}{V_A + V_{CE}}$$

Thus, in general, we have

$$I_C = \frac{I_C}{V_T} V_{be} + \frac{I_C}{V_A + V_{CE}} V_{CE}$$
Let us define

\[q_m = \frac{I_C}{V_T} \]

\[r_0 = \frac{V_A + V_{CE}}{I_C} \]

\[\Rightarrow I_C = q_m V_{be} + \frac{V_{CE}}{r_0} \]

Next, we relate the change in \(i_B \) to a change in \(V_{BE} \).

\[h_B = \delta = \frac{\delta I_C}{\delta} = \frac{I_{so} (1 + \frac{V_{CE}}{V_T}) e^{V_{BE}/V_T}}{\beta_o (1 + \frac{V_{CE}}{V_A})} \]

\[= \frac{I_{so}}{\beta_o} \cdot e^{V_{BE}/V_T} \]

\[i_B \]

\[\Delta i_B \]

\[i_B + \Delta i_B \]

\[i_B \]

\[V_{BE} \]

\[V_{BE} + V_{ce} \]

Draw a tangent line at the point \((V_{BE}, I_B)\). The slope of the line...
can be used to relate changes in i_B to changes in V_{BE}.

$$m = \frac{dI_B}{dV_{BE}} = \frac{I_{so} e^{V_{BE}/nT}}{nT} \times \frac{1}{V_T}$$

$$= \frac{I_B}{V_T}$$

$$\Rightarrow i_B = \frac{I_B}{V_T} V_{be}$$

Let us define $R_{\pi} = \frac{V_T}{I_B}$

$$\Rightarrow i_B = \frac{V_{be}}{R_{\pi}}$$

The Hybrid-π Model

The basic equations are

$$i_C = q_m V_{be} + \frac{V_{ce}}{R_0}$$

$$i_B = \frac{V_{be}}{R_{\pi}}$$

We can draw the model as follows:
We seek the relationships between i_c', i_b', and i_e'.

\[i_c' = g_m v_{be} = g_m (\lambda_b R_{\pi}) \]
\[= g_m R_{\pi} \lambda_b = \frac{I_c}{V_t} \frac{V_t}{I_b} \lambda_b \]
\[= \frac{I_c}{I_b} \lambda_b = \beta \lambda_b \]

\[i_c' = i_c' + i_b' = \lambda_c' + \frac{1}{\beta} \lambda_c' \]
\[= \lambda_c' \left(1 + \frac{1}{\beta} \right) = \lambda_c' \frac{1 + \beta}{\beta} \]
\[= \frac{\lambda_c'}{2} \]
Thus we have

\[i_c' = g_m v_{be} = \beta i_b = \lambda i_e' \]

If \(R_o = \infty \) (open circuit), the primes can be dropped.

The Base Spreading Resistance

The base region is narrow and its ohmic contact is small. Its resistance is denoted by \(R_x \).
In this case, we write

\[I_c' = q_m \nu = \beta I_B = \alpha I_c' \]

DC Current Relations

\[I_B = \frac{I_c}{\beta} \]

\[I_E = I_B + I_c \]

\[= I_c \left(\frac{1}{\beta} + 1 \right) \]

\[= I_c \left(\frac{1+\beta}{\beta} \right) \]

\[= \frac{I_c}{\alpha} \]

\[\Rightarrow I_c = \beta I_B = \alpha I_E \]

\[I_B = I_E - I_c = I_E - \alpha I_E \]

\[= I_E \left(1 - \alpha \right) = I_E \left(1 - \frac{\beta}{1+\beta} \right) \]

\[= \frac{I_E}{1+\beta} \]
Summary

\[I_C = \beta I_B = \alpha I_E \]
\[I_E = \frac{I_C}{\alpha} = (1+\beta) I_B \]
\[I_B = \frac{I_C}{\beta} = \frac{I_E}{1+\beta} \]
\[\alpha = \frac{\beta}{1+\beta} \quad \beta = \frac{\alpha}{1-\alpha} \]

The BJT T Model

The T model replaces \(R_n \) through which \(i_b \) flows with \(R_e \) through which \(i_c' \) flows. The voltage \(V_n \) must be the same for the two.

\[V_n = i_b R_n = \frac{i_c'}{\beta} R_n = \frac{\alpha i_e'}{\beta} R_n \]
\[= i_e' \frac{\alpha}{\beta} R_n = i_e' \frac{\alpha}{\beta} \frac{V_T}{I_B} = i_e' \frac{\alpha V_T}{I_c} \]
\[= i_e' \frac{V_T}{I_E} \]
Let \(R_e = \frac{V_T}{I_e} \)

\[\Rightarrow V_{\pi} = \beta e R_e \]

The resistor \(R_e \) is called the intrinsic emitter resistance. The \(T \) model is

\[i_c' = g_m V_{\pi} = \beta i_b = \alpha i_e' \]

Both the \(T \) model and the hybrid-\(\pi \) models give identical answers when numbers are substituted into the equations.