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Design Aspects of Graphic Equalizers®

R. A. GREINER AND MICHAEL SCHOESSOW

University of Wisconsin-Madison, Department of Electrical and Computer Engineering,
Madison, WI 53706, USA

The analysis and the design of graphic equalizers are discussed. Useful properties
of Hurwitz polynomials and positive real functions are applied to the types of active
networks commonly found in graphic equalizers. Questions concerning frequency and
phase response along with the optimum number of bands and their Q are addressed,
and some practical situations are examined. Seven different basic topologies are shown
with a discussion of the advantages, disadvantages, and unique features of each. Three
of the seven, representing the most commonly used topologies, are examined in more
detail, and the important design equations for each are given. All three are shown to
have minimum phase characteristics for any combination of control settings, although
other performance differences exist among them.

0 INTRODUCTION

Frequency response equalizers of some type are used
in almost all high-quality audio systems, mainly to
compensate for room acoustics. These equalizers usually
fall into the two general categories of parametric and
graphic. This paper will deal only with graphic equal-
izers, so named because an array of narrow-band filters
is normally adjusted with vertical slide controls arranged
side by side to resemble a graphic display of the set
frequency response [1]-[3].

Some of the many choices available in selecting or
designing an equalizer are addressed, including the
number of bands, the Q of the band filters, and the
maximum required boost and cut. The issue of minimum
phase is discussed in some detail.

Seven basic different graphic equalizer topologies
are shown. Analysis techniques which are useful for
filter arrays in general are presented, and their appli-
cations to the analysis of graphic equalizers are dem-
onstrated. Overall transfer functions are derived for
several designs, and the analysis techniques are used
to verify minimum-phase (MP) characteristics.

A computer program is employed to verify some of
the results obtained through analysis. Frequency and
phase response curves for several example circuits under
varying conditions of boost and cut are presented.

* Presented at the 69th Convention of the Audio Engineering
Society, Los Angeles, 1981 May 12-15; revised 1982 August
9.
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1 DISCUSSION

In the equalizer designs examined the Q of the in-
dividual bandpass responses was generally between 1
and 2 when the bands were adjusted for full boost or
full cut (all examples were octave-band equalizers).
The individual bandpass filters employed in the designs
were generally second order, and in all cases except
one the boost and cut capabilities of the overall circuit
could be represented by mirror image families of curves.
In other words, the circuits had symmetrical boost and
cut characteristics. (The analysis is thus simplified since
conclusions drawn concerning operation under boost
conditions will also apply under cut conditions.)

The Q of a bandpass filter is given by

Q = 5 = (1)

where w, is the resonance frequency, while @, and w;
denote the —3-dB points symmetrically flanking wy.
Eq. (1) also defines the bandwidth B. The relationship
between wg, ,, and w, is given by

wy = Vo (2)

0, may now be solved for in terms of w; and w,,

Q) = VMo 3)

w?— W
For bandwidths of one octave, o, = 2w, and Eq. (3)
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gives a value for Q, of about 1.4 as a starting point in
an octave-band equalizer design. Similarly, for a one-
third-octave per band equalizer, the value for Q, will
be about 4.3. This procedure takes into account only
the contributions of the immediately adjacent bands.
For most circuit topologies the overall Q will be a func-
tion of the amount of boost or cut. In such designs the
Q is typically maximum for maximum boost (or cut)
and can decrease at other settings by a considerable
amount depending on component values. This char-
acteristic tends to broaden the bands and cause con-
siderable overlap of adjacent bands for small amounts
of boost or cut. Such circuits are normally designed
with a high Q at maximum boost to compensate for
this effect. Circuits which exhibit a higher Q charac-
teristic for cut positions than for boost positions of the
controls have appeared as well [4].

Also affecting the smoothness of adjacent band com-
bining is the interaction between the individual filters.
Although there exist circuits in which the output is
simply a summation of the individual bandpass filters
and a flat channel, this is not always the case. The
boosting of a particular band may affect the Q or the
symmetry of an adjacent band, especially in equalizer
circuits which employ an overall feedback path en-
compassing all of the filters. This is demonstrated in
the specific analyses, and is illustrated in Figs. 24—
26.

Minimum phase is an often discussed characteristic
concerning complex filter arrays, and it has been sug-
gested that minimum-phase response is desirable in
equalizers [5]. The response produced when a signal
is passed through any minimum-phase network is one
such that a second network may be constructed to re-
cover the original signal. Except for a pure time delay,
the recovered signal will be an exact replica of the
original. A nonminimum-phase network will cause ex-
cessive phase lag, and to recover an exact replica of
the original signal, one would require a network that
violated causality and is thus not physically realizable.
The output of a nonminimum-phase network may be
equalized for either flat magnitude response or flat phase
response, but not both. With minimum-phase networks,
on the other hand, equalizing the magnitude also causes
the phase to become equalized, and vice versa. Many
questions remain unanswered concerning loudspeaker
system and room effects on phase response. The issue
of aural phase shift perception is still being debated.
But regardless of one’s opinion on these issues, it is
useful to know whether a particular equalizer design
exhibits minimum phase behavior for all combinations
of control settings.

2 TOPOLOGY

Figs. 1 -7 show various graphic equalizer topologies
in block diagram form. Although other topologies exist,
most of the designs, which have appeared commercially,
are represented by one of these figures.

Referring to the figures, the slanted arrows indicate
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the locations of the controls in the circuits. For example,
in Fig. 1, each of the filters contains the control for
that band. In Fig. 2 the controls are potentiometers
which pan between the two inputs at each of the sum-
ming nodes. In Fig. 5, the controls are simply output
level controls from each summing node.

The seven topologies shown may be broadly divided

© ouUT

Fig..1. Configuration for parallel-type filter. F|, F,, . . . are
filters of the form given by Eq. (6). Band gain controls are
included within each filter.

Fig. 2. Parallel-type filter using feedback summers. F,
F,, . . . are band-pass filters.

Fitter array
and
controls

L

Fig. 3. In this commonly used filter configuration the filter
array generally consists of passive or active resonant circuits.
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into two categories: series and parallel. Fig. 6 is a
series type and the other six are parallel types. In series-
type equalizers, the individual filters F; are of the type
that exhibit flat response (and usually unity gain) over
the audio spectrum for one position of the control. Two
types of filters are commonly employed; those that can
be adjusted for boost or cut, and those that can only
cut (notch filters). One advantage of the series-type
circuit is the ease of analysis. None of the individual
filters can affect each other if they are buffered. Also,
it is relatively simple to check the circuit for an overall
minimum-phase characteristic since it is only required
to show that the individual band filters be in general
minimum phase. This may be the reason why the series-
type configuration has acquired a reputation for being
definitely minimum phase. The filter sections which

5 OAF |
= AR, |

¥
= AF3 |,

{an] D)
)

Fig. 4. F|, F,, . . . are band-pass filters with gain A at res-
onance. Positive and negative outputs are summed to provide
boost and cut response.
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Fig. 5. F|, F,, . . . are low-pass filters in this arrangement
where each band is created by the combination of two adjacent
filters.
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are most often used (the RLC bridged-tee and the con-
stant-B) are not necessarily minimum phase, as used,
depending on component values. Normally bridged-
tee circuits are set up such that the series and shunt
resonant tank circuits are network duals, and under
these conditions a minimum-phase response is obtained.

The parallel-type designs are more difficult to analyze,
particularly concerning the question of minimum phase.
Most of the parallel-type designs conform to one of
the first three configurations (Figs. 1-3), and these
three configurations will be examined in detail.

3 GENERAL ANALYSIS

Suppose the transfer function is known for a particular
circuit. It may then be expressed in the general form

A(s)  Ey(s)
B(s) _ En(s) - @)

F(s) =

The stability of the circuit may be checked by plotting
the poles and zeros of F(s) in the s plane. If all of the
poles lie in the left half-plane [the roots of B(s) all
have negative real parts], the circuit will be stable.
Simple poles on the jw axis lead to borderline stability,
while multiple poles on the jw axis represent a case of
instability. The positions of the zeros [representing the
roots of A(s)] will have no effect on stability, but for
the case where they are restricted to the left half-plane,
the corresponding transfer function will be of the min-
imum-phase variety.

Polynomials whose roots all have nonpositive real

[/ /

IN o~ F —{F, — - - - - oo - -

— >{Fn —o ouT
/ / /

Fig. 6. Series filter set most commonly used in professional
equalizing filter sets. F, F,, . . . are generally notch filters
or may be of the form given by Eq. (6). This is the easiest
set to analyze and is usually configured to guarantee MP
response.

R

F.

+€ ouT

Fn

Fig. 7. The first of three filter-set topologies to be analyzed
in detail. The filters are simply band-pass filters whose outputs
are summed.
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parts are called Hurwitz polynomials. A Hurwitz poly-
nomial, when plotted in the s plane, will have no
roots in the right half-plane and no multiple roots on
the jw axis. Hurwitz polynomials with no roots on the
jw axis are called “‘strictly Hurwitz.” Several criteria
exist which may be applied to polynomials to determine
whether or not they are Hurwitz. The subject is covered
in some detail by most texts on network synthesis and
analysis [6]-[8]. In some cases it may be determined
by inspection that a polynomial is not Hurwitz. For
example s + 252 — 5 + 1 has a negative coefficient
indicating at least one root with a positive real part.

The determination of Hurwitz polynomials is useful
in that if the numerator A(s) of a physically realizable
stable transfer function F(s) = A(s)/B(s) can be shown
to be Hurwitz, the transfer function will be minimum
phase.

Most graphic equalizer circuits have an overall
transfer function which is the sum of the transfer func-
tions of the individual band filters plus a constant. De-
pending on the number of bands, the overall transfer
function may be quite complex. A one-third-octave
(per band) design, for example, will have a transfer
function with about 70 zeros. To insure minimum-phase
characteristics, it must be verified that none of these
reside in the right half-plane for any combination of
control settings. Such verifications are seldom directly
practicable, and a more efficient method of analysis is
desirable.

One useful concept is that of the ““positive real func-
tion.” A function G(s) is defined as being positive real
if it satisfies the following requirements:

1) It must be a rational function in s with real coef-
ficients.

2) It may not have poles or zeros in the right half-
plane.

3) It may not have multiple poles or zeros on the jw
axis.

4) It may not have the degrees of the numerator and
denominator differing by more than 1.

5) It must have a nonnegative real part for all s =
jw.

6) It must have real and positive residues for the
poles on the jw axis.

The usefulness of the positive real concept, and of
Hurwitz polynomials, derives from the following
properties concerning polynomials P, and P, [6]-[8]:

1) The arithmetic sum of any number of positive real
functions is a positive real function.

2) All positive real transfer functions are minimum
phase.

3) Any positive real transfer function P,/P, may be
synthesized as the driving point impedance of a two-
terminal passive network (Zy, = P,/P,), and conversely.

4) If and only if P,/P, is positive real, then P,/P, is
positive real.

5) If and only if P, is positive real, then KP, is
positive real, where K is a positive real number.

6) If P /P, is positive real, then P, and P, are both
Hurwitz, although not necessarily vice versa.
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7) If and only if P,/P, are both Hurwitz, then P,/P,
is minimum phase and nonoscillatory.

8) If P, and P, are Hurwitz, and if one of them is
also strictly Hurwitz, then PP, is Hurwitz.

9) If and only if P,/P, is positive real, then P; +
KP, is Hurwitz, where K is a positive real number.

10) A passive two-port network has a minimum-phase
transfer function if there is only one transmission path
connecting the input and output ports, and there are
no mutual inductances.

11) A function F(s) = K(s* + ags + a))/(s* + bgs
+ b)) is positive real if a,b; = (Vay, — V).

Showing that the individual band transfer functions
are or are not minimum phase is fairly simple in most
graphic equalizer circuits since the filters are relatively
low order. With only two or three zeros whose positions
must be checked, it is practical to just plot the pole—
zero constellation in the s plane. If the positions of the
zeros are defined in terms of component ratios, the
general case may be observed.

The majority of graphic equalizer designs employ
summed bandpass filters, and since the sum of several
minimum-phase filters is not necessarily minimum
phase, it is insufficient in these cases to simply show
that each filter section is itself minimum phase. If,
however, the individual band transfer functions can all
be shown to be positive real, then the overall transfer
function will also be positive real [property 1], and
therefore minimum phase [property 2]. Of all the listed
properties, property 3 is one of the most useful for
quickly verifying that a particular function is positive
real. Relating to this, the properties of passive driving
point functions are identical to those of positive real
functions.

A common design trait in graphic equalizers is for
the individual band filters to have transfer functions of
the form

(wo/Qo)s
FGo) = 5~ 3 (5)
s+ ((l)()/Q())S + Wo
which represents a bandpass filter, or
2 2
F(S) _ s° + K((l)()Qo)S + (1) i k = 0 (6)

st + (wg/Qy)s + (o02

which represents a bandpass filter with unity gain in
the stopband and a gain of K at resonance. Eq. (5) may
be realized as the driving point function of a parallel
RLC resonant circuit, thus demonstrating that it is pos-
itive real [by property 3] and minimum phase {by prop-
erty 2]. Eq. (6) may be verified as positive real using
properties 3) or 11). It will then also be minimum phase
[property 2}. Note that higher order bandpass filters
are not positive real, although they may be minimum
phase.

4 SPECIFIC ANALYSIS

In Section 2, some of the more commonly used
graphic equalizer topologies were illustrated. The first
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three of these will be analyzed in some detail.

Configuration 1 is shown in Fig. 8 in a form useful
for analysis. Each of the filters F,(s) is capable of pro-
viding symmetrical boost or cut at its center frequency,
or flat response, depending on the setting of its control.
A schematic representation of a single-filter section is
shown in Fig. 9. For the case of full boost the poten-
tiometer wiper is to the far left, and under these con-
ditions the transfer function is

F(s)= —

PAPERS

The equation for passband gain Ay [which is equal to
the ratio of the s term coefficients in Eq. (8)] appears
in simplified form as

2

Ag max = A( -

3 (13)

Egs. (11)-(13) are used to design the filter sections.

s* + S[2R,R,C, + (R, + R3)(R, + Ry)CLI/R R, CiCH(Ry + R3) + (2R, + RZ)/RIRZC]Cz(Rl + Ry)

Eq. (7) is of the same form as Eq. (6), and in practice
the filter can be designed to satisfy property 11). Since
the overall transfer function for this design is composed
of the sum of a number of such filters plus a constant,
it is both positive real and minimum phase [by properties
1) and 2)]. From Fig. 8 it is seen that the summing
occurs at a virtual ground point, and therefore interaction
between filter sections is avoided.

Referring to Eq. (7) and Fig. 9, in practice R3 serves
only to bias the operational amplifier and is usually
made much larger in value than either R, or R;. Because
of this, a simplification of Eq. (7) is possible. If each
of the Ry + R; terms is replaced with just Rj, the
transfer function for a single filter section becomes

F(s) =

52 + S[2RR,C, + Ri(R, + R)CHR\RRC\C; + (2R, + R)IRIRRC\Cy

s 4 s[(Ry + R)C; + 2R,Cy + (R + R)CLI/RIR,C\Co(Ry + R3) + (2R, + Ry)/R\R,C1Co(R) + Ry)

(7

At a glance it may appear that Ay . and Qg max can be
chosen independently. Unfortunately this is not true.
For any chosen value of Ag ., there is only one value
of Q¢ max possible. For example, if Ag pay is set at 4 (or
12-dB maximum boost and cut), the value of Qg max 1S
1.1. As it turns out, 1.1 is not a bad value for Qg nax
if six to ten bands are to be used in the overall design.
This circuit, however, cannot be used for larger designs
such as half-octave or third-octave where it is desirable
to have Qg max values between 2.5 and 5. Going back
to Egs. (9) and (10) with different ratios for Cy, C, and
R>, Ry does not significantly alter the situation. Qg

The equations may now be written for center frequency
0] and QO max

72R1 + R (9)
Wy = T o o~
R1R2R3C1C2

B \/ 2R, + Ry
QO max R1R2R3C1C2
- RyR;CC )
(R, + R)Cy + 2R,C| + R3Cy -
(10)

These equations are inconvenient to work with as they
appear and a simplification is desirable. A useful pro-
cedure is to specify ratios for some components. A
ratio of C; = 10C, broadly optimizes Qg, and R =
10R, is reasonable for reasons previously mentioned.
Egs. (9) and (10) may then be reduced to

1 A

- R,
w = orc, |2t R (1
O = \/2@. (12)
0 max 96R|
398

¢+ S[(R, + Ry)C, + 2R,C; + R3C,1/R\R:R:C\C; + (2R, + Ry)/R\RR:C\Cy

(8)

decreases from its maximum value for conditions other
than full boost or full cut. This is illustrated in Fig.
21(b).

Once the individual filters are designed, the remaining
resistor values in Fig. 8 may be calculated. The overall
transfer function is

EO(S) R

_ _ hy & .
Eiy(s) B R, + Ry, (2, Fi(s)) . (14)

If we wish to generate an overall transfer function

Rg
_R
Enls) © —H Fs v >
1 o E, ()
| +
' —
I Rb -
o=t Fals) [

Ra

Aan—

Fig. 8. This realization of the filter topology of Fig. 9 is used
for analysis. Each filter is capable of providing a symmetrical
boost or cut at its center frequency.
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which is flat in frequency response, that is,

Eo(s)
Ein(s) A 1)

and with the conditions that all controls are centered,
we find

A= — — +n (16)

where n is the number of bands. For the special case
of one filter section, F(s), set at full boost with all
others set flat, we can write

Ey Ry R;
- = — — 4 — 1 -
E;, R, (n ) Ry,
Ry Ry
— F = — F .
+ R 1(s) R. 1(s) (17)
This implies
Ry Ry
R, (n 1) R, 0 (18)
which yields
R
R, = b . (19)
n — 1

Note that R; falls out of the equation as expected, since
it simply represents a gain multiplier. Its value can be
found from Eq. (16), where it specifies the flat response
circuit gain. The magnitudes of R, and R, are important
only in the sense that their ratio must be the correct
value.

Configuration 2 is shown in Fig. 10 in a form useful
for analysis. The individual band filters F;(s) are second-
order bandpass filters of the form

(wo/Qo)s
s2 4 (wg/Qg)s + wg®

F(s) = (20)

When potentiometer R, in Fig. 10 is adjusted with its
wiper to the far left, the frequency band covered by
F\(s) is accentuated in the overall circuit output. Po-
sitioning the wiper of R to the far right causes a large
amount of negative feedback to occur at this same fre-
quency, thus causing attenuation in the forward signal
path. In each case the remaining filters Fi(s) receive
percentages of both the input signal Ej,(s) and the output
signal E(s) in ratios determined by their respective
potentiometer settings.

From Fig. 10 the overall transfer function may be
derived:

Eo(s) = —[Ein(s) + Ex(s)] 2D
Eo(s) = —Ei(s) —A Z; EF(s) (22)
where
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Ei(s) = (1 = x)Eip(s) + x; Eo(s) . (23)
Then
—Eo(s) = En(s) + A 2 [(1 — x)Ei(s)
+ X Eo($)]Fi(s) . (24)

The general form of the overall transfer function is
then
EO 1+ A 2,‘ (1 - X,‘)F,‘(S)

Ens) 1+ ASaFd (25)

The effects of various settings of the potentiometers
may now be investigated. For the special case with all
of the controls centered, x will be equal to 0.5 for each
band. Eq. (25) then yields Eo(s)/Ejp(s) = —1, as ex-
pected. For the special case with band 1 set for full
boost (x; = 0) and all other bands set flat (x = 0.5),

Eo(s) —
Ein(s)

AF(s) (26)

-1+ 4
1 + 0.54 3 Fis)
i=2

and for band 1 at full cut (x; = 1) with all other bands
flat we have

B~ _ |,
Eiy(s)

+

AF(s) eX))
1 + 0.5A 3 Fys)
i=2

where A is defined as R,/R, in Fig. 10.

At this point some approximations are appropriate.
For an array of second-order bandpass filters F(s) which
satisfies Egs. (1) and (2) in terms of frequency spacing
and Q, we can write

;Fi(s) ~K ' (28)

where K is a constant representing the average value
of the complete summation. This is illustrated in Fig.
11. When Eq. (3) is satisfied, K is approximately 1.2—
1.3. For finite larger groups of filters the approximation
remains useful near the center of the frequency range
covered by the group. Fig. 12 illustrates the summation
of nine filters, as would be the case for an octave band
equalizer. From Eq. (28) it follows that

T Rs

INRPUT o OUTPUT

Fig. 9. Schematic of each filter section used in the config-
uration of Fig. 8.
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> Fis) = 2 Fi(s) — Fi(s) =K — Fi(s)  (29)
i=2 i=1

where F(s) is the response of one filter section alone.
If the frequency band described by F(s) resides near
the center of a large but finite group of filters, Eq. (28)
may be applied with suitably altered limits. Eq. (29)
is used to eliminate the F,(s) term in Eq. (26). With K
= 1.2 we have

Ey(s) AF(s)

1+ -
Ein(s) I + 0.5A(1.2 — Fy(s))
(30)

Replacing F(s) with the general form for a bandpass
filter [as given in Eq. (20)],

PAPERS
and the Q will be
I + 0.64
Onax = Qo T+014 " (33)

To investigate how Q varies with differing amounts of
boost or cut the appropriate values of x; may be put
into Eq. (25) and the corresponding succeeding equa-
tions again derived.

For any combination of control settings Eq. (25) will
have the form of a fraction in which the numerator and
denominator each consist of the sum of a group of
positive real functions plus unity [assuming the bandpass
filters F(s) are of the form of Eq. (20)]. Therefore the
numerator and denominator are both themselves positive
real functions [properties 1) and 5)], and the form of

Eo(s) B sS (1 + L1IA(] + 0.64)] (@20/Qo)s + qu 31)
Ein(s) s+ [(1 + 0.1A)/(1 + 0.64)] (w/Qo)s + wo>
Eq. (31) describes the same special case as Eq. (26), Egq. (25) is
that is, all bands set flat except for one (the one centered
at wg in this case) fully boosted. Eq. (31) yields the Eo(s) - _ P (5)/Py(s) (34)
following information concerning the response with a Ein(s) P3(s)/Py(s)

single fully boosted band [or a fully cut band considering
the symmetry between Egs. (26) and (27)]. With a
single band set for full boost or full cut and all other
bands set flat, the gain at the center frequency of the
boosted band will be

where P (s), Py(s), and Py(s) are polynomials. Since
—P(s)/P5(s) and P;(s)/P,(s) are both positive real
functions, it follows that P,(s), P,(s), and P3(s) are all
Hurwitz polynomials [property 6)]. Eq. (34) reduces
to the ratio of two Hurwitz polynomials, and thus de-

1 +1.14 scribes a minimum-phase function [property 7)], ver-
A, 32) iy ; . ‘o :
1 + 0.1A ifying that the overall response curve for this equalizer
w=w,
N AO) ). Ra
RG] E o _ﬁ»_
A
XiR,
E (), a
Re (EA[ T e, |

Ein(s) o

Ry  Ex(s)

2 % Eol®)

A

" ’h - RQ T
R ‘E,(fi‘:, Fn () —waA—
fond ae
) °
XnRn
L

Fig. 10. The sccond of the three contigurations discussed in detail. Each filter is a second-order band-pass circuit of the form

given by Eq. (20).
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topology will always be minimum phase.

The topology most widely used in graphic equalizers
is the one represented by configuration 3 and shown
in more detail in Fig. 13. The series RLC resonant
filters are labeled Z,, Z,, Z3, etc. They each provide a
low-impedance path to ground at their particular res-
onant frequency. If the wiper of potentiometer R, in
Fig. 13 is moved to the far left, a-high-loss voltage
divider will exist in the forward signal path at frequency
F,. Positioning the wiper to the far right will effect a
high feedback loss, causing a corresponding boost in
the forward signal path. The effects introduced by the
various potentiometer settings are not entirely inde-
pendent since the individual resonant circuits are not
isolated by buffer amplifiers or virtual ground-driving
points.

For the special case with only a single filter section
(Fig. 14) we have, for the transfer function,

E()(S) _ 52 + S(R3R4 + R2R4 + R2R3 + Rle)/L(Rz + R3) + 1/LC

DESIGN ASPECTS OF GRAPHIC EQUALIZERS

L R, + R;
QO = E R3R4 + R2R4 + R2R3 + R1R3 ’

(37)

For the case of full boost (R3 = 0 in Fig. 14), the
transfer function reduces to

Eys) _ 8+ 5(Ri + R)/L + VULC 5
E.(s) 8 ts@®RJL) + ULC (38)
Under these conditions,
L
Q0 max = R, \/k (39)
4 C .
R, + R
Agwn =~ g (40)
4
(35)

E'm(S) S2 + S(R3R4 + R2R4 + R2R3 + R1R3)/L(R2 + R3) + 1/LC -

This is of the same form as Eq. (6), and in practice
can be made to satisfy property 11). From Eq. (35) it
is seen that

1 36
w = iz (36)
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Fig. 11. Magnitude and phase responses for the filter array
of Fig. 10. Only the summed response is shown for the phase
angle.
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From Eqgs. (37) and (39) it can be seen that this is a
circuit for which the Q is highest under conditions of
full boost or full cut. The amount of Q reduction for
midway settings of the control is largely determined
by the values of R, and R3, which represent the poten-
tiometer. Typical values of Qo max range from 1.5 to
2.0. Eq. (40) shows that after Ry is chosen for a particular

108

T2

36

mrozPr Mnr1Lo

-ioB

U MICH-ZO>X
o

12 4 0z 4 1002 4 1000 2 4
FREQUENCY # 10
Fig. 12. For a finite group of filter sections, nine in this case,
the phase and amplitude response curves show considerably
more band end variation. Compare this to Fig. 11.
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value of Qg 4y, the maximum obtainable boost and cut
is set by R,. The effective contours of the controls,
relative to gain and Q, are dependent on the poten-
tiometer values. Values which are large compared to
R, in Fig. 14 will cause most of the control range to
be near the extremes, with little variation for settings
near the middle. Large potentiometer values will also
cause the Q of the bands to be somewhat lower for any
given setting except full boost or full cut, and the var-
iation of Q with boost will become greater. Note that
Qo max Will not be affected. In practice it is desirable
to reduce the Q variation by making the potentiometers
low resistance compared to R,. There exists, however,
a practical lower limit on the potentiometer values be-
cause of the resulting decreased loop gain for the op-
erational amplifier. This may result in a significant
reduction in high-frequency accuracy or dc stability.
One design solution is to put an additional gain stage
inside the feedback loop. Alternatively two or three
complete circuits may be connected in series and the
controls distributed evenly among them. Then each of
the two or three operational amplifiers would be required
to drive only one-half or one-third as many potentiom-
eters in its feedback network.

It has been shown that the circuit transfer function
is minimum phase for the case with only a single filter.
For the more general case, with a large number of filter

E;vx (s) D—N;\sz

— =0 £, (5)

L
3 C. rres = rl
R
£

g Ly
Frcs =F

Fig. 13. The third filter configuration studied in detail. It is
one of the more common ones used in octave-band equalizers.

o E,(s)

C
%:RA

Fig. 14. This single section of the filter set of Fig. 13 is uscd
to derive Eq. (35).
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sections, direct nodal analysis is not practicable, and
adifferent approach is required in checking for an overall
minimum-phase characteristic. The circuit can be re-
drawn as in Fig. 15. If a wye—delta transformation is
performed on each filter section as shown in Fig. 16,
the circuit in Fig. 15 can be transformed to that of Fig.
17. The parallel combination of all the Z, is represented
by Zy' and similarly for Z." and Z;". Nodal analysis of
the circuit in Fig. 17 gives

Ey 1 +RIZS

Ey _ 1 Z' + R)Z,
En 1+ RZy ~— (Zd + RVZy

R
E'm (S)O__JW\‘.
Eq(s)
Ra, Ru X

Section 1

(41)

section 2

section 3
: : )
! ﬁ 1
v I
< 1

Fig. 15. This representation of the filter set of Fig. 13 is used
as the basis of the transformation described in detail.

R R2C TR
%

z
e

= RaRb * RGZC M %ZC
R

CRR IR
Z
]

2f

Fig. 16. Standard wye—delta transformation, applied to Fig.
15 to obtain the more useful topology of Fig. 17.

R
E; () o~
o0 E,($)
R
M-
’

X

Z) Z,

Fig. 17. Transformed topology of the original circuit of Fig.
13. It can now be readily analyzed to give Eq. (41).
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As expected, Z;' does not appear in the equation since
it is connected across the input terminals of an oper-
ational amplifier. Note that when Z;" = Z.', which
occurs when all the controls are set to the center, the
circuit gain is unity.

From Fig. 16 the form of the individual Z4 and Z,
is found to be
s’LC + sRC + 1

e (42)

This function can be synthesized as the driving-point
impedance of a series RLC network. Functions Zy' and
Z.' can be synthesized as parallel combinations of such
networks as shown in Fig. 18 and are therefore positive
real functions.

Since we know that Z;' is effectively out of the circuit,
it may be eliminated from the schematic. What remains
is essentially a pair of filter circuits connected in series
as shown in Fig. 19. The transfer function of filter 1
is

Zy 1
T, = - = — . 4
: Zy + R 1 + RIZ4 (43)
The transfer function of filter 2 is
Z.' + R
T2 = eZe, - (44)

Note that the product of the functions 7,7, equals Eo/
E,. as in Eq. (41). Referring to Eq. (43), Z4'" is known
to be positive real so R/Z4' is also positive real by
properties 4) and 5). The quantity 1 + R/Z," is positive
real by property 1), and therefore Eq. (43) as a whole
is positive real by property 4). A similar line of reasoning
shows Eq. (44) to be positive real as well. Itis concluded
that filters 1 and 2 in Fig. 19 are both minimum-phase
types. Since two or more minimum-phase filters con-
nected in series have an overall transfer function that
is minimum phase, it has now been shown that this
particular graphic equalizer topology is in fact minimum
phase, for any combination of settings.

Practical designs utilizing this circuit usually replace
the RLC branches with RC electronic equivalents, as
shown in Fig. 20. The driving-point impedance for
Fig. 20(a) is

s’LC + sRC + 1

de = (45)
)
while that for Fig. 20(b) is
s’(R2 + R\R) C,C, + s(RIC)) + 1
z, = “ROTRR)CO+ SO T 46

SC]

The new equations for center frequency and Qomay, re-
ferring to Fig. 20(b), are

wp = \/777 L (47)
0 (R® + R\R»)C,\C;
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Qome = B RIC: (48)
0 max RlCl

Each of the configurations examined has been shown
to have minimum-phase characteristics for any com-
bination of control settings. Configuration 1 also has
an overall transfer function which is positive real, al-
though this does not appear to have any practical sig-
nificance. Configurations 2 and 3 exhibit adjacent band
amplitude interaction while configuration 1 does not.
The choice of topologies may also depend upon the
cost and complexity of construction. In this area, con-
figuration 3 appears the most attractive.

The performance of all three configurations was also
examined with the aid of a computer, using an electronic
circuit analysis program (ECAP). Various combinations
of control settings were implemented for each of the
circuits, with the resulting magnitude and phase plots
shown in Figs. 21-29. In each case, nine bands were
employed, spaced at one-octave intervals, and with the
center section at 1 kHz. These are numbered, one
through nine, low-frequency to high-frequency band,
for reference in the figures.

Configuration 1 (see Figs. 8 and 9):

R, = 10kQ, R, = 100k, Ry = I MQ, C, =
10C,. Maximum boost or cut for a single band is
12dB. Qo mux = 1. 1.

Configuration 2 (see Fig. 10):

F; are inverting, two-pole bandpass filters. Max-
imum boost or cut for a single band is 12 dB. @y
of F; = 1.4. Q of overall circuit (with one band
fully boosted) = 3.

Configuration 3 (see Fig. 13):

R = 3 k. Potentiometers = 5 k{). Maximum
boost or cut for a single band is 12 dB. Qg nax =
1.7.

The component values used in the ECAP programs
were similar to those commonly found in commercial
units.

The significant differences between the three con-
figurations are displayed in the figures.

Cireuit L with its relative low band Q produces broad
but very smooth composite curves. The lack of adjacent
band interference in this design is seen when comparing
it to circuit 3 (comparing Figs. 24 and 26), where such
effects act to further in¢rease the gain when several
adjacent sections are boosted.

The variation of Q with boost differs considerably
in the three circuits and is shown in Figs. 21, 22, and
23.

. b
:

A
],_MY'\_

o

Fig. 18. Parallel resonant circuits as shown are positive real
type.

403




GREINER AND SCHOESSOW

Configuration 2 displays several effects, the mech-
anism of which may not be immediately apparent. Al-
though the individual bandpass filters have Qg of 1.4,
the overall circuit displays a much higher single band
Q. This is due to the output signal of the overall circuit

PAPERS

being fed back out of phase to the adjacent bands,
where it subtracts from the skirt regions of the boosted
band, thus effectively increasing its Q. Note that when
several adjacent bands are boosted, the skirt-subtracting
phenomenon operates only on the outsides of the end

L

A J

(a) (b)

Fig. 20. The circuit shown in (a) is often replaced with the
electronic equivalent (b). In either case the filter remains
MP.

108 W

T2

mrazZP Mu» I

-108

20

T MICTH-ZO>rX
<

12 4 02 4 100 2 4 000 2 4
FREQUENCY « 10

Fig. 21. Configuration 1 with band 5 set at +6 dB (dashed)
and +12 dB (solid), and all other bands set flat.
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bands in the group. In effect then, one can have a low
Q band flanked by higher Q bands, and by suitable
adjustment of the controls obtain a relatively flat plateau
with sharp cutoff on each side (Fig. 25). As the Q,
the bandpass filters is increased, the skirt-subtracting
effect is reduced due to the increasing ratio of band
spacing to bandwidth. Unfortunately, high Q combined
with one-octave spacing between bands will leave gaps
such that a narrow (one octave wide, for example) boost
will not be possible for many frequencies. One solution
to this problem, which has been used commercially,
is to make the individual filters adjustable in frequency.
Reducing the Oy of the filters to a very low value initially
(say, 0.5-1.0) is not practical, since the skirt-sub-
tracting effect begins to dominate, even in the passband.
For example, if the O, of the filters is set at 0.7, it is
necessary to set R¢/R, (Fig. 10) to 200 in order to obtain
12 dB of boost. Stopband ripple also becomes excessive
under these conditions. Another characteristic of this
design, not shared with the other two, is asymmetrical
boost and cut curves for bands near the edge of the

group.

5 CONCLUSION

Analysis techniques have been demonstrated which
can be used to derive overall transfer functions for
graphic equalizers, and to verify whether or not a par-
ticular topology exhibits minimum-phase characteristics
at all times. Derivation of overall Q and boost/cut range
were also demonstrated.

It was shown that three of the more common topol-
ogies exhibit minimum-phase characteristics for any
combination of control settings, although differences
in Q and band interaction exist among them. These
results were verified with a computer analysis.

We have not addressed the questions of the audible
significance of minimum-phase performance nor of the
minimum-phase characteristics of loudspeakers. Higher
order and narrow-band filters remain to be evaluated,
however. These are not commonly used in home-lis-
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Fig. 22.
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Configuration 2 with band 5 set at +6 dB (dashed)

and +12 dB (solid), and all other bands set flat. The dotted

line sho

ws bands 5 and 6 both set to +12 dB.
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? Fig. 23. Configuration 3 with band 5 set at +6 dB (dashed)
and +12 dB (solid), and all other bands set flat.
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Fig. 24. Configuration 1 with bands 4, 5, and 6 each set at

+6 dB (dashed) and +12 dB (solid), and all other bands set
flat.
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Fig. 25. Configuration 2 with bands 4, 5, and 6 each set at
+6 dB (dashed) and +12 dB (solid), and all other bands set
flat. The dotted line shows bands 4 and 6 set at +12 dB,
while band 5 is adjusted for a flat plateau.
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Moz Mmn>»Io
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Fig. 26. Configuration 3 with bands 4, 5, and 6 each set at
+6 dB (dashed) and +12 dB (solid), and all other bands set

flat
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Fig. 27. Configuration 1 with bands 4, 5, and 6 set at +6
dB, —6 dB, and +6 dB, respectively, and all other bands set

flat.
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Fig. 28. Configuration 2 with bands 4, 5, and 6 set at +6
dB, —6 dB, and +6 dB, respectively, and all other bands set

flat.

108
72

36

- 36

mrozy MurIo

-108

20

TOU MUCTH-ZOrZ
o

Fig. 29.
dB, —6 dB, and +6 dB, respectively, and all other bands set

flat.
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Configuration 3 with bands 4, 5, and 6 set at +6
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tening systems, but are employed mainly in the equal-
ization of auditoriums where other criteria are preem-
inent.
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APPENDIX
+6 TRANSFER FUNCTIONS AND PERFORMANCE
 set ! DATA FOR CIRCUITS 4, 5, 6, AND 7
The overall transfer function for configuration 4 (see
] Fig. 4) is
E(s) "
Es) © K + A EFi(s)(2X,- -1 . (49)

i=1

In a practical circuit the controls are potentiometers
which pan between the inverting and noninverting out-
puts of the filters. In Eq. (49) X represents the poten-
tiometer setting. For flat response, X = 0.5 for each
band, while X = 1 represents full boost and X = 0
represents full cut. The constant K is normally set to

1. The value of A determines the maximum available
boost and cut.

I A disadvantage of this topology is that the boost and
the full boost curves are represented by Eq. (6) [as-

cut curves will not be mirror image complements. While
f suming F,(s) are second-order bandpass filters], the
full cut curves resemble notch filters of the form

st + (»02

F(s) = (50)

S2 + (JJ()/QO + (1)()2 .

The circuit configuration is in general mininum phase
for suitably chosen filters F(s) (second-order bandpass
filters, for example), and has the advantage of inde-
pendently selectable Q and gain ratios in the bands.

A somewhat more parts-efficient topology eliminates
the inverters in each bandpass filter and uses instead

t ; one inverter common to all bands placed at the input

of the main summing node.
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The overall transfer function for configuration 5 (see
Fig. 5) is

Ey(s)
Ein(s)

= KlFl(s) + Kn+l [1 - Fn(s)]

n—1
+ Y KIF(s) = Fia(9)] (51)
i=2

where K is a measure of the voltage gain through the
attentuators. For flat response all of the controls are
set at K = 0.25 (assuming a desired boost and cut
capability of 12 dB). Full boost is effected in a particular
band by setting its control for no attenuation (K = 1).
A gain of K = 0.0625 results in a 12-dB cut. Note that
for overall unity gain with all controls set flat, a 12-
dB gain output buffer is required.

This circuit requires the summed outputs of the band
filters to add a constant whenever they are all set at
equal levels. Because of this the Q and the spacing of
the filters are critical if flat response is to be ensured
when all controls are set to their flat response positions.
This represents a disadvantage of the design.

For overall minimum-phase response, the low-pass
filters must be first order, which will result in the output
being a summation of second-order bandpass filters
plus one low-pass filter and one high-pass filter.

The overall transfer function for configuration 6 (see
Fig. 6) is

Ey(s)
Ein(s)

= Fi()Fy(s) - - - Fy(s) . (52)

This configuration has the unique advantage that for
an overall minimum-phase response, the necessary and
sufficient condition is that the individual filters F(s) be
minimum phase. This advantage is very attractive when
designing a one-third-octave or a one-sixth-octave unit.

The overall transfer function for configuration 7 (see
Fig. 7) is

Eo(s) -
= K. F.
E. (s) 21 i Fi(s)

(53)
where K is a measure of the voltage gain through the
attenuators. For flat response all of the controls are set
at K = 0.25 (assuming a desired boost and cut capability
of 12 dB). Full boost and full cut are effected by setting
K = 1and K = 0.0625, respectively. As with config-
uration 5, the Q and the frequency spacing of the filters
are critical if flat response is desired when all controls
are at the same relative positions.

For overall minimum-phase response at all settings
the bandpass filters must be second order, and for overall
unity gain with all controls in the fiat position, a 12-
dB gain output buffer is required.

The biographies of R. A. Greiner and Michael Schoessow
were published in the March issue.
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