Low-Noise Monolithic Amplifier Design: Bipolar versus CMOS

M. STEYAERT, Z.Y. CHANG AND W. SANSEN
ESAT-MICAS, Departement Elektrotechniek, KU Leuven, Kardinaal Mercierlaan 94, B-3030 Heverlee, Belgium

Received January 9, 1991; Revised March 13, 1991.

Abstract. Design of monolithic low-noise amplifiers in bipolar and CMOS technologies for matching a given signal source is presented. Noise matching conditions are derived for three different types of source impedance, i.e., resistive, capacitive, and inductive. Emphasis is put on the comparison of the best noise performance obtainable by the use of bipolar and CMOS approaches. It is shown that for a resistive source, low-noise amplifiers can easily be designed in both bipolar and CMOS technologies. While for capacitive and inductive sources, a CMOS approach yields better noise performance than a bipolar one. Measurement and simulation results on some amplifiers are presented which confirm the theoretical considerations.

1. Introduction

It is a well known fact that noise in an integrated circuit (IC) determines the ultimate accuracy with which the IC can process weak signals without significant deterioration in the signal quality. Therefore, low-noise design forms one of the most important design objects for low-level signal processing ICs such as transducer interface circuits, AM/FM receivers, detector readout electronics, etc. Although the noise performance of such systems depends in general on the noise behavior of the basic building blocks comprising the systems, low-noise design in practice is focused on the front end circuits of the system. Because in a well designed system the system noise performance is always dominated by the noise performance of the preamplifier.

For a given signal source, the noise performance of the preamplifier is determined by two factors, i.e., the noise generated within the amplifier itself and the signal impedance seen by the amplifier input. This means that low-noise amplifier design generally constitutes two steps. First, design the amplifier input stage in such a way that an optimal noise matching is obtained for the given source impedance. Secondly, design the rest of the amplifier so that their noise contributions are kept sufficiently lower with respect to the input stage. Noise matching is concerned with optimal choice of the basic design parameters of the input stage so that the total equivalent input noise is minimal for the given signal source impedance. The second step involves minimizing transfer functions associated with each signal source and thus relies on deep insights into the circuit response with respect to each noise source. Circuit techniques, such as emitter or source degeneration in current sources [1], [2], adding a dc bypass to the input stage [3], inserting an emitter follower in the places where current noise is dominant [4], etc., are essential for accomplishing the second step.

It is important to note that monolithic noise matching differs from the classical discrete one in the methods of approach. In discrete realizations, noise matching has been obtained by such means as transformer coupling, input reactive tuning, paralleling several specially selected input devices such as low-noise JFET transistors [5], [6]. In the monolithic case, optimal noise matching can only be obtained by the appropriate choice of transistor dimensions and dc bias conditions. The inconsistency of the classical noise matching methods with the monolithic approaches makes low-noise monolithic amplifier design very cumbersome. In this paper, detailed noise analyses and some circuit techniques are presented for low-noise amplifier design using bipolar or CMOS technologies.

In section 2, the noise behaviors of MOS and BIT transistors are reviewed from the practical design point of view. Emphasis is put on the relationships of each noise source to the process and design parameters. Based upon the noise models, general noise matching conditions are derived for three possible source types (i.e., resistive, capacitive, and inductive) in the three subsequent sections. These noise matching conditions enable circuit designers to design the amplifier input stage so as to obtain the best noise performance. Design examples will be given to verify the analytical results.
2. Noise sources in MOSFET and BJT

2.1. Noise Sources in MOS Transistors

To better understand the monolithic noise matching mechanism, it is desirable to review the basic noise characteristics of MOSFET and BJT transistors. In a MOS transistor, the two well-known noise sources are the thermal noise associated with the electron conduction channel and the 1/f noise. On the basis of the elementary MOS theory and Nyquist theorem, it can easily be calculated that the short circuit drain current noise spectral density under saturation condition is given by [7], [8]:

\[i_{n}^2 = 4kT \frac{2}{3} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{T}) = 4kT \frac{2}{3} g_{m} \]

(1)

where \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, and \(g_{m} \) is the transconductance of the MOSFET. Since the transconductance \(g_{m} \) depends on the \(W/L \) ratio and the DC bias current \(I_{DS} \), the channel thermal noise can be minimized by a proper choice of these two design parameters.

In contrast to the channel thermal noise, the mechanism involved in the 1/f noise has not been fully understood. A large number of theoretical and experimental studies show that the 1/f noise in MOSFET is caused by the random trapping and detrapping of the mobile carriers in the traps located at Si-SiO\(_2\) interface and within the gate oxide. On the basis of this model, it can be calculated that the short circuit drain current noise spectral density under saturation condition is given by [9]:

\[i_{n}^2(f) = \frac{\mu g_{m}^2 I_{DS} kT N_e}{L^2 C_{ox} \alpha f} \ln \left(\frac{\sqrt{2} n_{SO}}{n_{i}} \right) = \frac{K_{F} I_{DS}}{C_{ox} L^2 f} \]

(2)

where \(K_{F} \) is a technological dependent constant proportional to the effective trap density \(N_e(P_{n}) \). Dividing (2) by the square of the transconductance, the equivalent input 1/f noise can easily be calculated as given by

\[V_{n}^2(f) = \frac{K_{F}}{2 \mu C_{ox} W L f} = \frac{K_{F}}{C_{ox} W L f} \]

(3)

From a circuit design point of view, it is important to note that the 1/f noise voltage depends only on the gate area and is independent of any DC bias parameters.

In addition to the channel thermal and the 1/f noise, MOS transistors exhibit also parasitic noise due to the resistive poly-gate and substrate resistance. These parasitic noise sources can be taken into account by introducing two white noise generators \(4kT/R_{g} \) and \(4kT/R_{b} \) in the small signal schematic of a MOS transistor as shown in figure 1a. Since the equivalent poly-gate resistance \(R_{g} \) and substrate resistance \(R_{b} \) depend mainly on the layout structure of MOS transistors, good layout techniques are of great importance [9].

For sake of convenience for noise analyses, the equivalent input noise generator models are widely used. These models are based on the fact that the noise performance of any two port network can be represented by two equivalent noise generators at the input port of the network [10]. For a MOS transistor this representation is shown in figure 1b. The two equivalent input noise generators are calculated from figure 1a as given by

\[V_{n}^2 = \left| \frac{i_{n}^2 + i_{i}^2 + i_{ab}^2}{g_{m} - j \omega C_{GD}} \right|^2 + 4kT R_{g} \]

(4)

\[i_{i}^2 = \left| j \omega (C_{GS} + C_{GD}) \right|^2 \frac{(i_{d}^2 + i_{i}^2 + i_{ab}^2)}{g_{m} - j \omega C_{GD}} \]

(5)

where \(i_{ab}^2 \) represents the noise contribution of the substrate resistance and is given by \(i_{ab}^2 = 4kT R_{b} g_{m}^2 \). Since \(g_{m}^2 \) is much higher than the transistor cut-off frequency \(f_{T} \), the term \(j \omega C_{GD} \) can be neglected with respect to \(g_{m} \) for all practical cases of interest. It is important to note that the first term of \(V_{n}^2 \) and \(i_{i}^2 \) depends on the same set of noise sources, which means that these two terms are 100% correlated.

2.2. Noise Sources in BJT

In contrast with a low frequency source current \(I_{DS} \) under the SiO\(_2\) surface, the noise in the BJT transistor is mainly related to the noise within the bulk of the base-emitter junction. This results in different noise characteristics with the terminal current levels and noise associated with the noise of the transistor is of the order of

\[i_{n}^2 = 2qI \]

and \(i_{i}^2 = 2qI \)

Furthermore, due to the presence of the 1/f noise in BJT transistors, it is a several order of magnitude higher than in MOS transistors. Therefore, this noise can be neglected in noise analyses.

BJT transistors also suffer from series resistances and have practical low noise collector resistances. Hence, this effect is taken into account with respect to the base resistance in the noise behavior of the BJT. The noise behavior of the BJT is shown in figure 2a.
2.2. Noise Sources in BJT Transistors

In contrast with a MOSFET transistor where the drain source current I_{DS} is dominated by the drift current under the SiO$_2$ surface, the current in a bipolar junction transistor is mainly composed of diffusion currents within the bulk of the device. The difference in the basic conduction mechanism between both kinds of device results in differences in noise mechanism associated with the terminal currents. So, for instance, the noise associated with the base and collector current in a BJT transistor is of the shot noise type and they are given by

$$i_B^2 = 2qI_B$$

$$i_C^2 = 2qI_C$$

Furthermore, due to the bulk conduction mechanism, the 1/f noise in BJT transistors has been found to be several orders of magnitude lower than that in MOS transistors. Therefore, in most cases, the 1/f noise can be neglected in noise calculations.

BJT transistors show also thermal noise due to the series resistances associated with three terminals. For practical low noise design, the effect of the emitter and collector resistances can always be neglected with respect to the base resistance. With this approximation, the noise behavior of a BJT transistor can be described by the network as shown in figure 2a. The corresponding equivalent input noise generator model is given in figure 2b. Under the assumption that the base resistance is small with respect to r_e, the two equivalent noise generators are given by [9]:

$$i_n^2 = i_B^2 + i_C^2 + i_e^2 \frac{i_B^2}{\beta} \left(1 + \frac{j\omega}{\omega_B} \right)^2$$

(8)

$$v_n^2 = i_B^2 r_e^2 + 4kT \left[r_e + \frac{1}{2Bm} \right]$$

(9)

where i_B^2 represents the 1/f noise power spectrum, β_e the dc value of β and $\omega_B = 1/\tau_e (C_e + C_o)$, which is related to the transistor cut off frequency f_T by:

$$\omega_B = 2\pi f_T/\beta_e$$

It is important to note that only at very low frequencies, where the 1/f noise dominates, and at very high frequencies, where transistor current gain $\beta(j\omega)$ falls off, the correlation effects are significant. In the middle frequency range, the correlation is not important so that it can be neglected which results in dramatic simplification in noise calculations.

3. Low-Noise Amplifiers with Resistive Sources

On the basis of the equivalent input noise generator models derived for MOSFETs and BJTs, low-noise design of bipolar and CMOS amplifiers can be easily performed. Since the noise performance of amplifiers depends strongly on the impedance of the signal source, design efforts will depend on the type of source impedance. In this section, the noise performance and optimization are presented of transimpedance amplifiers with a resistive source, which is the simplest type of source impedances.

Transimpedance amplifiers are widely used to amplify a signal current coming from a high impedance source [11], [12]. The basic feedback configuration and its associated noise sources are shown in figure 3. It is easily seen that to guarantee the loop stability the
core amplifier must have an opamp transfer characteristic. Also, as long as the loopgain is much larger than unity, the transimpedance (i.e., \(V_{\text{out}}/I_m \)) is simply given by the feedback resistance \(R_f \), independent of the source impedance.

Since the signal is in a current form, the noise performance of a transimpedance amplifier is generally described by the total equivalent input current noise in parallel with the current source \(I_m \). Taking into account all noise sources, the total equivalent input current noise \(i_{\text{eqi}}^2 \) is easily calculated as given by

\[
i_{\text{eqi}}^2 = \frac{4kT}{R_f} + \frac{4kT}{R_f} + i_o^2 + \left(\frac{V_{\text{in}}}{(R_s/R_f)} \right)^2 + 2Re \left(i_o \frac{V_{\text{in}}}{(R_s/R_f)} \right) \tag{10}
\]

where the last term represents the correlation effect of the voltage and current noise generators of the core amplifier. Depending on the type of technology used, the above expression can explicitly be written as functions of the basic design parameters of the input device.

3.1. BJT Technology

In this case, neglecting the 1/f noise and the correlation effect of the two equivalent input noise generators, the general expression (10) becomes:

\[
i_{\text{eqi}}^2 = \frac{4kT}{R_s/R_f} + \frac{2qI_C}{\beta} \left(1 + \frac{\omega^2}{\omega_0^2} \right) + \frac{4kT_R}{(R_s/R_f)^2} + \frac{2(2kT)^2}{qI_C(R_s/R_f)^2} \tag{11}
\]

From this expression, some general conclusions can be drawn for low-noise transimpedance amplifiers design. First, the noise current of the feedback resistance \(R_f \) contributes directly to the total input current noise and this noise contribution can always be kept lower than that of the source resistance \(R_s \) by choosing \(R_f > R_s \). Secondly, the noise contribution of the base resistance \(R_b \) of the input BJT transistor is not significant as long as \(R_b \ll R_s/R_f \). The key issue in minimizing the base and collector shot noise contributions is the optimal choice of the collector bias current \(I_c \). Neglecting the frequency dependent term, the optimal collector current can easily be obtained from (11) as given by

\[
C_{\text{opt}} = \frac{kT}{q} \sqrt{\beta} \left(\frac{1}{R_s/R_f} \right) \tag{12}
\]

\(\uparrow I_{c,\text{opt}} \)

3.2. CMOS Technology

For the case of a MOSFET input, the general noise expression (10) can be by virtue of (4) and (5) explicitly written as:

\[
i_{\text{eqi}}^2 = \frac{4kT}{R_s/R_f} + \frac{8kT\frac{1}{8\mu m} + \frac{K_f}{C_{\text{air}}W/L}}{\left(R_s/R_f \right)^2} \left[1 + \frac{(\omega C_{\text{in}}R_s/R_f)^2}{(R_s/R_f)^2} \right] \tag{13}
\]

where the term \(\omega C_{\text{in}}R_s/R_f \) is the result of the equivalent input current noise generator of the MOS input. Since the bandwidth of the transimpedance amplifier must be lower than the \(\omega_{-3dB} < 1/C_{\text{in}}R_s/R_f \) due to the

Fig. 4. Effect of collector current on the noise performance of transimpedance amplifiers.

Under this optimal bias condition, the noise contributions due to base and collector shot noise are given by

\[4kT(R_s/R_f)\sqrt{\beta}\] which is a factor \(1/\sqrt{\beta}\) lower than the noise of \(R_f/R_s \). Therefore, it can be concluded that the noise performance of transimpedance amplifiers with a resistive source can always be made to be dominated by the resistive source itself. This is illustrated in figure 4 for two cases of source resistances. The upper three curves are for the case \(R_s/R_f = 99 \) Ohm. The \(4kT_R \) represents the contribution of \(R_s/R_f \) the one of the resistors, and \(2qI_C \) one of the base and collector current of the transistor. As can be seen the \(4kT/R_f \) noise dominates by far the amplifier noise above biasing currents in the range 100 \(\mu A \) up to 10 mA. The three lower three curves are for the case \(R_s/R_f = 5 \) kOhm. Also in this case the \(4kT/R_f \) noise dominates by far the amplifier noise in a wide biasing range, namely from 10 \(\mu A \) up to 1 mA. Furthermore, for both cases the minimum of \(2qI_C \) curve is a factor \(1/\sqrt{\beta} \) lower than the noise \(4kT/R_f \).

Fig. 5. Feedback topology for a capacitive source.
stability constraint, the effect of this term on the amplifier noise performance is not significant. Note that in (13) the contributions of poly-gate and substrate resistance is omitted, as they are mainly concerned with layout techniques.

As (13) shows, the noise contribution of the core amplifier is inversely proportional to $(R_{g}/R_f)^2$. Therefore, for a large source resistance, the core amplifier noise contribution can easily be made negligible with respect to that of the source resistance, making a MOS input preferable to a BJT input. For a low source resistances, the thermal noise contribution of the core amplifier can be minimized by choosing an input MOSFET with a minimal channel length and a maximal channel width, and using a dc bias current as high as possible. Practically, the channel thermal noise contribution is less than that of R_{g}/R_f if the following condition is met: $1.5g_{m}R_{g}/R_f > 1$. Since the 1/f noise depends only on the transistor dimensions, the only way to reduce the 1/f noise contribution is to increase the gate area WL.

4. Low-Noise Amplifiers with Capacitive Sources

In many applications such as car radio receivers and photodetector systems, the electrical signals to be processed are obtained by a signal conversion in a capacitive source. In the first case, the signal source is the capacitive antenna while in the second case it can be a photo sensitive diode. The network equivalent of such sources can be represented by a current source in parallel with or by a voltage source in series with a capacitor. For such applications, the noise performance of the front end circuits are of great importance, as it determines the sensitivity or the resolution of the systems.

The front end amplifier for both applications uses a capacitive feedback configuration as shown in figure 5 to obtain the best noise performance. C_s can be the capacitance of an antenna or the junction capacitance of a detector, C_p is the parasitic capacitance and C_f is the feedback capacitance. Since the capacitances do not generate any noise, the noise performance of the amplifier is determined by the noise contributions of the two noise generators of the core amplifier. Irrespective of what type of input transistor is used, the total equivalent input noise voltage is given by

$$v_{i_{eq}}^2 = \left[\frac{C_o + C_p + C_f}{C_a} \right]^2 v_{i_{na}}^2 + \left| \frac{1}{j\omega C_a} \right|^2 i_{na}^2 + 2\Re\left\{ \frac{C_o + C_p + C_f}{C_a} v_{i_{na}} \cdot \frac{i_{na}^*}{-j\omega C_a} \right\}$$ (14)

where the last term accounts for the correlation effect between the two equivalent input noise generators. Depending on the type of technology used, the above expression can explicitly be written as functions of the basic design parameters of the input device.

4.1. BJT Input Stage

Filling the expressions for the two equivalent input noise generators of a BJT in (14), the above equation is explicitly expressed as

$$v_{i_{eq}}^2 = \left[\frac{C_o + C_p + C_f}{C_a} \right]^2 4kT \left(r_b + \frac{kT}{2qI_C} \right)$$

$$+ \left| \frac{1}{j\omega C_a} \right|^2 \frac{2qI_C}{\beta}$$ (15)

As is generally the case, to minimize the noise contributions of the base resistance and the base shot noise, the input transistor must be designed to have a small base resistance r_b and a large current gain β. Since for a given technology the base resistance is mainly concerned with layout techniques, good layout such as the use of a multibase configuration is of considerable importance. Under the normal operating conditions the current gain β is more or less constant and depends only on technological parameters so that little can be done about it by circuit designers. On the other hand, the collector bias current is a free parameter for circuit designers. Therefore, the noise optimization is equivalent to the optimization of the collector current. By taking the derivative of (15) with respect to I_C the optimal collector current is obtained:

$$I_{C,\text{opt}} = \frac{kT}{q} \omega(C_o + C_p + C_f)\sqrt{\beta}$$ (16)
In order to avoid too elaborate calculation, each noise source is optimized separately. The key issue in optimizing the channel thermal noise and the 1/f noise is the optimal choice of the input transistor dimensions to match the source capacitance. For the thermal noise, it can be shown that an optimal gate width exists for which expression (17) is minimal [9]:

$$W_{opt} = \frac{C_a + C_p + C_f}{2\alpha\omega L}$$ \hspace{1cm} (18)

where \(\alpha\) is defined as \(\alpha L = (L + 3L_D)\), \(L_D\) is the underdiffusion. For long channel devices the value of \(\alpha\) is always close to unity, as \(L_D\) is much smaller than the effective channel length \(L\). Equation (18) is the general noise matching condition for CMOS amplifiers with capacitive sources. It is important to realize that this noise matching condition is equivalent to the condition \(C_{in} = (C_a + C_p + C_f)/3\). This interpretation is found to be more convenient for detector readout applications which emphasize the matching requirement of the input capacitance to the detector capacitance. Fill the optimal gate width in (17), the corresponding minimal equivalent input thermal noise voltage is obtained as given by

$$v_{2q,min} = \left[\frac{4}{3} \frac{C_a + C_p + C_f}{C_o} \right]^2$$

$$\frac{8}{3} \frac{kT}{\mu I_{DS}(C_a + C_p + C_f)}$$ \hspace{1cm} (19)

Expression (19) is the theoretical minimal equivalent input thermal noise level that can be achieved by using a CMOS technology. For a given capacitive source (i.e., \(C_a\) and \(C_p\)), its lower limit is determined by the minimal gate length \(L\) and the maximal possible dc bias current \(I_{DS}\) of the input transistor. In addition, a nMOS input device is preferred to a pMOS due to its high mobility.

For the 1/f noise, it can be shown that an optimal gate area \(W_{opt}\) exists for which the 1/f noise contribution is minimal.

$$W_{L_{opt}} = \frac{3(C_a + C_c + C_f)}{2\alpha C_{ox}}$$ \hspace{1cm} (20)

Note that this equation can also be interpreted as \(C_{in} = C_a + C_p + C_f\). The existence of the optimal gate area rather than the gate width stems from the fact that the 1/f noise source depends on the gate area \(W L\) and is independent of the \(W/L\) ratio as (3) shows. It means that as far as the 1/f noise is the only concern, either the \(W\) or the \(L\) may be chosen freely to meet the optimal noise matching condition. This is a very useful property of MOS transistors. For instance, in a practical circuit, the transistors are to be sized to meet the minimal thermal noise requirement, and then the 1/f noise is added. The corresponding optimal noise matching formula is the following:

$$v_{2q,min}^2 = \frac{8}{3} \frac{kT}{\mu I_{DS}(C_a + C_p + C_f)}$$

As expected, this is proportional to a square of \(L_D\). Theoretically, this minimum is independent of the nominal parameters and represents the limit of the noise performance of this particular technology for a given doping. A capacitive source can be used to improve the CTS (cascoded) for a higher \(C_{ox}\).

For the final conclusion, it is important to see that the optimal parameters for the thermal noise matching condition are independent of the technology where the optimal noise can be found numerically. As \(L_D\) is not known, this approximation is useful as it allows the optimization of both noise sources.

Under the optimal thermal noise density for a given bias current, the collector current or the collector voltage can be obtained by using the bipolar model.
optimal noise matching condition (20). However, taking into account the thermal noise and other design requirements such as the GBW and the response speed, etc., the minimal transistor gate length should be chosen. The corresponding minimal 1/f noise contribution is

\[\nu_{\text{eqmin}}^{1/f} = \frac{8\alpha(C_a + C_c + C_f)K_f}{3C_{ox}C_d^2f} \]

(21)

As expected, the minimal 1/f noise \(\nu_{\text{eqmin}}^{1/f} \) is inversely proportional to the frequency. In contrast with the theoretical minimum of the thermal noise contribution, this minimum is independent of any transistor geometrical parameters and dc bias levels. It sets thus the lowest limit of the noise level that can be achieved by a CMOS technology for any capacitive feedback amplifiers with a capacitive source. Its value can only be reduced by improving the CMOS technology with a lower \(K_f \) and a higher \(C_{ox} \).

For the final choice of the input transistor dimension, it is important to see that the optimal noise matching condition for the 1/f noise requires an input transistor dimension which is just three times larger than for the thermal noise. This difference results in a situation where the optimal input dimension must be solved numerically. As a simple rule of thumb, one can approximate the optimal gate dimension simply as the average of both optima.

Under the optimal noise matching condition, the noise density for the case of using the MOS input is also shown in figure 6. It is clearly seen that whatever the collector current is, superior noise performance can be obtained by the MOS input rather than with a bipolar one.

This important conclusion has been confirmed by the experimental results on two integrated amplifiers. The bipolar realization is presented in [13] and its circuit schematic is given in figure 7. The input transistor Q1 uses a compromised collector current of 50 \(\mu \)A to realize the best noise matching. The gain stage Q2 is biased at a much higher current level so that its noise contribution is negligible. The circuit schematic of CMOS version is shown in figure 8 [3]. The input transistor dimension is derived from the optimal noise matching condition. A dc bypass branch formed by MP and RP is added to increase the input transistor transconductance and thereby reducing the total equivalent input noise. At the same time, this branch reduces also the current noise of the active load of the input stage. With this circuit technique, the total noise contribution of all devices other than the input transistor M1 is only

5\%. The measured equivalent input noise of bipolar version is 1 \(\mu V_{\text{rms}} \) and that of the CMOS version amounts to 0.7 \(\mu V_{\text{rms}} \).

5. Low-Noise Amplifiers with Inductive Sources

In the previous section, low-noise design techniques are presented for amplifiers with capacitive sources. In this section, design of amplifiers with inductive sources are described. Inductive type signal sources can be found in many communication applications such as ferrite antennas in radio receivers and magnetic heads of video cassette recorders. In these systems, electrical signals are obtained by the signal conversion from electromagnetic...
fields into electrical currents in an inductive coil. In general, the converted electrical signal can be very small (i.e., 1...nA) so that a very low-noise preamplifier is necessary to amplify the signal to a high level for further processing.

For such applications, a flat output response is generally required. Since the converted signal current in an inductive source is constant independent of frequency, the required flat response can easily be realized by means of a constant transimpedance amplifier. The simplest and widely used approach to the transimpedance amplifier employs a resistive feedback structure as discussed in section 3. However, the noise performance of such amplifiers is not adequate to fulfill the noise requirement because the noise current of the feedback resistor stands in parallel with the signal source. A new approach is proposed where a combined resistive and capacitive feedback configuration is used [2], [9]. The use of this configuration results in much better noise performance and at the same time realizes a constant transimpedance.

Figure 9 shows the proposed feedback configuration where A is the core amplifier, I_{in} represents the signal current generated by an electrical field in the inductive source L_a and C_a is the parasitic capacitance of the source, the feedback network is formed by R, C_1 and C_2. It can easily be calculated that the transimpedance is given by

$$\frac{V_{out}}{I_{in}} \approx \frac{R}{C_1} \text{ or } \frac{C_2}{C_1} + C_2$$

As for all transimpedance amplifiers, the noise performance of the amplifier in figure 9 is characterized by the total equivalent input current noise i_{eq}^2 in parallel with the current source I_{in}. Since ideal inductors and capacitors do not generate noise, the total equivalent input current noise i_{eq}^2 is determined by the core amplifier noise. As for the previous two types of amplifiers, the noise performance of amplifiers with an inductive source will depend on the technology used.

5.1. BJT Technology

Neglecting the correlation effect between the two noise generators v_{na}^2 and i_{na}^2, the total equivalent input noise current spectrum i_{eq}^2 is given by

$$i_{eq}^2 = i_{na}^2 + \left[\frac{1}{j\omega L_a} + \frac{(j\omega)^2 L_a (C_1 + C_a)}{j\omega L_a} \right]^2 \times v_{na}^2 + \frac{4kT}{R} \left(\frac{C_1}{C_2} \right)^2$$

where the first two terms are the noise contributions of the core amplifier, and the last term represents the increase in noise current due to the feedback network. From expression (24) it is clear that the use of an antena with large inductance L_a reduces the contribution of i_{na}^2, especially at the low frequency end, while a small feedback capacitor C_2 is desirable to reduce the v_{na}^2 contribution at high frequencies. Therefore, it is of great importance to keep the feedback capacitance C_2 as small as possible.

The significance of the capacitive feedback on the noise performance can be evaluated from the last term. If the same transimpedance is realized by a purely resistive feedback amplifier, the noise contribution of the feedback network, which is simply a resistor R in this case, will be $4kT/R$. This is a factor C_2/C_1, larger than the last term in (24). It is thus possible to reduce the noise contribution of the feedback network by increasing the capacitance ratio C_2/C_1. In practice a capacitance ratio of 30 is sufficient to make the noise contribution of resistor R negligible compared to the current noise of the core amplifier, even for the case where the input transistor is biased with a relative small current, for example, $I_C = 50 \mu A$.

Just as for the amplifiers with resistive and capacitive sources, the noise minimization for amplifiers with inductive sources also consists of making the input BJT base resistance r_b as small as possible and the current gain β as large as possible and of choosing an optimal collector current. By taking the derivative of (24) with respect to I_C, it can be shown that the current I_C that minimizes the noise is given by

$$I_C = \frac{1}{\beta}$$

5.2. CMOS Technology

From the above, the main obstacle to the BJT amplifiers is the case of capacitive feedback networks. A major improvement can be made if the same source is used. Takin the two equivalent CMOS approaches for the noise contribution to the total equivalent noise current, it can be shown that

$$i_{eq}^2 = \frac{1 + (j\omega)^2 C_1}{C_1 + C_2}$$

where v_{na}^2 is the equivalent noise voltage of the input node.

In contrast with the BJT approach, the current noise term in (24) will be eliminated. It is the noise term that made the BJT input. Since the above expression is valid for any input current, the design of the input

For the case of the BJT, an optimal gate width W is minimal. Since the frequency, the optimization of the frequency as voltage, the most efficient frequency range is

$$W_{opt} = \frac{3}{2\omega_0^2 C_2}$$

for which the noise is minimized.
Inductive Pickup

\[V_{oc} = \frac{1}{2} \omega N A M H \]

\[I_{sc} = \frac{1}{N} H \]

\[Z = \frac{V_{oc}}{I_{sc}} = \frac{1}{2} \omega L \]

\[L = \frac{\mu AN^2}{\ell} \]
respect to I_1, it can be shown that an optimal bias current I_i exists for which the total equivalent input noise current i_{eq}^2 is minimum. However, this minimum is frequency dependent, as the source impedance and feedback network depend on frequency. As a result, the noise optimization in a wide frequency band is not possible by using a bipolar approach and therefore a compromised collector current must be taken [2], [9].

5.2. CMOS Technology

From the above discussion, it becomes clear that the obstacle to the best noise performance of bipolar amplifiers with reactive sources is the base shot noise. For the case of capacitive source, it is shown that better noise performance can be obtained by using a CMOS approach rather than a bipolar one. It will be shown now that the same is also true for the case of an inductive source. Taking into account the correlation between the two equivalent input noise generators v_{la} and i_{eq}, the total equivalent input noise for the case of CMOS approach is given by [9]:

$$i_{eq}^2 = \left[1 + \frac{(j\omega)^2 L_a(C_1 + C_a + C_{GS} + C_{GD})}{j\omega L_a} \right]_2 \times \frac{v_{la}^2}{v_{la}^2 + \frac{4kT}{R} \left(\frac{C_1}{C_2} \right)^2}$$ \hspace{1cm} (25)

where v_{la}^2 is the equivalent input voltage noise generator of the input MOS transistor, and is given by (4). In contrast with the case of a BJT input where a constant current noise term due to the base current noise exists in i_{eq}^2 in (24), with a MOS input device this term is eliminated. It is the disappearing of this constant current noise term that makes the MOS input preferable over the BJT input. Similar to the case of capacitive sources, the above expression can be minimized by the optimal design of the input MOS transistor.

For the channel thermal noise, it can be shown that an optimal gate width exists for which equation (25) is minimal. Since the coefficient of v_{la}^2 depends on frequency, the optimal transistor dimensions depend on the frequency as well. For frequencies lower than the resonant frequency $\omega_r = \sqrt{L_a(C_a + C_1)}$ the optimal gate width W_{opt} is given by

$$W_{opt} = 3 \left[1 - \frac{\omega^2 L_a(C_a + C_1)}{2\omega^2 C_{x} L_a} \right] \frac{1}{2\omega^2 C_{x} L_a} \left[\frac{1}{\sqrt{L_a(C_a + C_1)}} \right]$$ \hspace{1cm} (26)

It can be easily shown that this optimal gate width corresponds with the classical reactive noise matching condition which reduces the noise at a specific frequency exactly to zero by making the impedance to be infinite at that frequency. However, for wide-band noise matching, the strong frequency dependence of W_{opt} in (26) makes it not valuable. On the other hand, for frequencies higher than the resonant frequency ω, the optimal W_{opt} is given by

$$W_{opt} = \frac{\omega^2 L_a(C_a + C_1) - 1}{2\omega^2 C_{x} L_a} = \frac{C_a + C_1}{2\omega C_{x}}$$

$$\text{for } \omega \gg \omega_r = \frac{1}{\sqrt{L_a(C_a + C_1)}} \hspace{1cm} (27)$$

which is approximately independent of frequency allowing realization of the noise matching in a wide frequency band. Under this noise matching condition, it can be shown that a factor of two lower noise voltage can be obtained by the CMOS approach instead of the bipolar one.

However, as CMOS exhibits much $1/f$ noise, its effect must be investigated as well. Since $1/f$ noise depends on the gate area W_L, it is anticipated that an optimal gate area exists for which the $1/f$ noise contribution to the total i_{eq}^2 is minimal. It can be shown that for $\omega < \omega_r$, the optimal gate area is given by exactly the same expression (26) as for the thermal noise making the $1/f$ noise contribution to zero. While for $\omega > \omega_r$, the value of the optimal W_L is approximately independent of frequency and is just three times larger than the value given by (27) [9]. Obviously, for the final choice of the input transistor dimensions, both the thermal and $1/f$ noise must be considered at the same time.

To verify the above analysis, both bipolar and CMOS amplifiers have been designed to match an inductive antenna of practical radio receivers. The circuit schematic of the bipolar version is shown in figure 10 [2], [9]. The input transistor Q1 uses a compromised collector current of 50 μA to realize the best noise matching in a wide frequency band. The emitter degeneration technique is applied to the active load of the input stage and to the current mirror of the output stage. This technique is invaluable to limit the extra noise contributions of the active load and the current mirror. The circuit schematic of CMOS version is shown in figure 11 [9]. The input transistor dimension is numerically derived from the optimal noise matching conditions. Since the input stage has a relatively high constant gain up to high frequencies, the noise contribution of the second and third stages are negligible. The noise performance of
6. Conclusions

The capability of bipolar and CMOS technologies for low-noise monolithic amplifier design is described. Based on the basic noise models of BJT and MOS transistors, noise matching conditions are derived for all three possible types of source impedance, i.e., resistive, capacitive and inductive. For each type of source impedance, comparisons are made between the best noise performance obtainable by using bipolar and CMOS technologies. It is shown that for a resistive source, both bipolar and CMOS amplifiers can easily be designed of which the noise performance is dominated by the source resistance itself.

On the other hand, for a capacitive or an inductive source, low-noise design requires much more effort because the source itself does not generate any noise and the impedance varies with frequencies. In the case of a bipolar approach, the best noise performance requires a BJT input transistor with a minimal base resistance, maximal current gain β and an optimal collector bias current. The basic limitation to low-noise performance of bipolar amplifiers for reactive sources is the existence of the base shot noise. This base shot noise prevents noise matching from being realized in a wide frequency band.

This limitation can be eliminated by using a CMOS approach due to its inherent low input current noise property. However, as a CMOS technology shows much higher 1/f noise than a bipolar one, low-noise design in a CMOS technology must take into account the 1/f noise as well. It is shown that for a given reactive signal source, a CMOS approach enables the best noise matching to be obtained in a wide frequency band by proper choice of the input transistor dimensions. This fact leads to the important conclusion that better noise performance can be obtained by a CMOS approach rather than a bipolar one.

References

Michel S.J. Steyaert (S’65–M’89) was born in Aalst, Belgium, on April 30, 1959. He received his engineer’s degree in electrical and mechanical engineering from the Katholieke Universiteit Leuven, Heverlee, Belgium in 1983 and his Ph.D. degree in electronics from the Katholieke Universiteit Leuven in 1987.

From 1983 to 1986 he obtained an IJWNL fellowship which allowed him to work as a research assistant at the Laboratory ESAT-K.U. Leuven. In 1987 he was responsible for several industrial projects in the field of analog micropower circuits at the Laboratory ESAT-K.U. Leuven as an IJWNL project-researcher. In 1988, he was a visiting assistant professor at the University of California Los Angeles. Since 1989 he has been appointed as an NFWO research associate at the Laboratory ESAT-K.U. Leuven, where he has been an associate professor since 1990. His current research interests are in high frequency analog integrated circuits for telecommunications.

Zhong Yuan Chang (S’88–M’91) received the engineer’s degree in electrical and mechanical engineering from the Katholieke Universiteit Leuven, Heverlee, Belgium in 1985, and the Ph.D. degree in electronics from the Katholieke Universiteit Leuven in 1990.

From 1985 to 1990 he was a Research Assistant at the Laboratory ESAT of the Katholieke Universiteit Leuven, working on low-noise analog bipolar and CMOS integrated circuits.

Recently, he joined the Alcatel Bell in Antwerpen, Belgium, where he is active in the design of high frequency analog integrated circuits for telecommunication applications.

Willy M.C. Sansen was born in Poperinge, Belgium on May 16, 1943. He received the engineering degree in electronics from the Katholieke Universiteit Leuven, Belgium, in 1967 and the Ph.D. degree in electronics from the University of California, Berkeley, in 1972.

In 1968 he was employed as an Assistant at the Katholieke Universiteit Leuven. In 1971 he was employed as a Teaching Fellow at the University of California. In 1972 he was appointed by the N.F.W.O. (Belgian National Foundation) as a Research Associate, at the Laboratory Elektronika, Systemen, Automatisatie, Technologie, Katholieke Universiteit Leuven where he has been full professor since 1981. Since 1984 he has been the head of the department of Electrical Engineering.

In 1978 he spent the winter quarter as a visiting assistant professor at Stanford University, and in 1981 at the Techn. Univ. Lausanne, and in 1985 at the University of Pennsylvania, Philadelphia. His interests are in device modeling, in design of integrated circuits, and in medical electronics and sensors.

Dr. Sansen is a member of the Institute of Electrical and Electronics Engineers (IEEE), the Koninklijke Vlaamse Ingenieurs Vereniging (KVIV), the Audio Engineering Society (AES), the Biotelemetry Society and Sigma Xi. In September 1969 he received a CRB Fellowship from The Belgian American Educational Foundation, in 1970 a GTE Fellowship, and in 1978 a NATO Fellowship.