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Abstract—When the series resistance is separated and treated
as a separate element, it is shown that losses in an inductor re-
quire the ratio of the flux to mmf in the core to be frequency de-
pendent. For small-signal operation, this dependence leads to a
circuit model composed of a lossless inductor and a resistor in
parallel, both of which are frequency dependent. Mathematical
expressions for these elements are derived under the assumption
that the ratio of core flux to mmf varies as ωn−1, where n is a con-
stant. A linear regression technique is described for extracting the
model parameters from measured data. Experimental data are
presented to justify the model for the lossy inductance of a loud-
speaker voice coil. A SPICE example is presented to illustrate the
effects of voice-coil inductor losses on the frequency response of a
typical driver.

I. INTRODUCTION
For small-signal operation, the voice coil of an electrody-

namic loudspeaker driver can be modeled by three elements in
series – a resistance, a lossy inductance, and a dependent volt-
age source representing the back emf generated when the di-
aphragm moves [1]. The circuit is shown in Fig. 1, where RE

is the resistance and LE is the inductance. The back emf is
given by BcuD, where B is the magnetic flux in the air gap, c
is the effective length of wire that cuts the flux, and uD is the
mechanical velocity of the diaphragm. The back emf due to the
diaphragmmotion exhibits a band-pass effect that decreases to-
ward zero as frequency is increased above the fundamental res-
onance frequency of the driver. At the higher frequencies, the
impedance is dominated by the inductance.

Fig. 1. Equivalent voice-coil circuit.

When the series resistance of the voice coil is separated and
treated as a separate element, the lossy inductance can be mod-

eled at any frequency by a circuit consisting of a lossless induc-
tor in parallel with a resistor [2]. If the frequency is changed,
the values of both the inductor and the resistor change. In [3],
it is shown that eddy current losses in the magnet structure
cause the impedance of the lossy inductor to be of the form
Z = K

√
jω. In [4], experimental data is presented which

shows that this model fails to predict the high-frequency im-
pedance of many drivers. An empirical model is described for
which the impedance of the lossy inductor is assumed to be of
the form Z = KrωXr + jKiωXi . An experimental method for
determining the model parameters is described that is based on
impedance measurements at two frequencies.
The lossy inductance model of [3] requires one parameter.

The model of [4] requires four. In the following, a model is
derived which requires two parameters. A linear regression
method for determining these from measured voice-coil im-
pedance data is developed and an example is presented. A
SPICE model for the lossy inductor is described and a SPICE
simulation is used to illustrate the effect of the inductor losses
on the frequency response of a driver.

II. INDUCTOR FUNDAMENTALS

The analysis presented here assumes an inductor that is
wound with wire that exhibits zero resistance. When the analy-
sis is applied to the lossy inductance of a loudspeaker voice
coil, it is assumed that the series resistance of the voice coil has
been separated and is treated as a separate element. Although
both the large-signal and small-signal behaviors of inductors
are reviewed in this section, the model developed for the lossy
inductor is strictly valid only for small-signal operation.
Figure 2 illustrates an inductor consisting of turns of wire

wound on a rectangular core. The total flux λ linking the coil is
given by λ = Nϕ, where N is the number of turns of wire and
ϕ is the flux linking a single turn. The voltage across the coil is
given by

v =
dλ

dt
= N

dϕ

dt
(1)

The magnetic properties of the core material determine the
relationship between the current in the coil and the impressed
voltage. These properties are usually described by a plot of
the flux ϕ versus the impressed magnetomotive force or mmf
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Fig. 2. Inductor consisting of N turns of zero-resistance wire wound on a
magnetic core.

given by F = Ni, where i is the current in the coil. Two such
plots are shown in Fig. 3(a), where it is assumed that the mmf
varies sinusoidally with time and has a mean value of zero. The
arrows indicate the direction of motion around the curves as
time increases. Curve 1 assumes the core material is linear. In
this case, the curve is an ellipse. For a lossless core, the ellipse
degenerates into a straight line. All magnetic materials exhibit
a nonlinearity that causes the flux to exhibit a saturation effect
as the impressed mmf is increased above some value. Such a
plot is shown in curve 2, where the flux is assumed to saturate at
1/2 of the peak value in curve 1. The curves are often referred
to as hysteresis loops.

Fig. 3. (a) Plots of flux versus mmf. (b) Plots of mmf versus flux.

The curves in Fig. 3(a) assume that the mmf is the indepen-
dent variable. Because F = Ni, it follows that the curves are
plotted for a current source excitation. If a sinusoidal voltage is
impressed across the coil, it follows from Eq. (1) that the flux
linking each turn is determined by the voltage. Thus the flux
is the independent variable for a voltage source excitation. In
this case, the plots of F versus ϕ are shown in Fig. 3(b). Curve
1 for a linear core material remains an ellipse. However, curve
2 for a core material that exhibits flux saturation effects shows
a rapidly increasing mmf as the flux is increased. For the as-
sumed flux saturation factor of 1/2, the peak value of the mmf
is twice the peak value in curve 1.
Figure 4 illustrates the voltage, flux, and current waveforms

for a sinusoidal voltage impressed across the coil. The current

i1 is for the linear core. The flux lags the impressed voltage by
90o. The current lags the voltage by less than 90o, increasing
to 90o for a lossless core. The current i2 is for the nonlinear
core. The current waveform is no longer sinusoidal. It exhibits
a peak value that is higher by a factor of 2. An increase in the
applied voltage causes this peak to increase rapidly, causing the
inductor to approach a short circuit as the core saturates.

Fig. 4. Plots of voltage v, flux ϕ, current i1 for the linear core, and current i2
for the nonlinear core versus time.

In the following, a linear magnetic material is assumed. Oth-
erwise, the definition of inductance would be impossible and
phasor analyses would be precluded. For a linear core, the pha-
sor form of Eq. (1) is

V = jωNϕ = j2πfNϕ (2)

where ω = 2πf is the radian frequency. For |V | a constant,
it can be seen that |ϕ| is inversely proportional to the product
f ×N . It follows that any effects of core saturation are reduced
if the frequency of the impressed voltage is increased or if the
number of turns of wire is increased. This result plays an impor-
tant role in transformer design if core saturation problems are
to be avoided. The lower the frequency of operation, the more
turns of wire must be used, causing low-frequency transformers
to be larger than high-frequency counterparts. It also explains
why a “step-down” transformer cannot be used in reverse, i.e.
with the primary and secondary reversed.
For a linear magnetic material, a sinusoidal voltage im-

pressed across the coil results in sinusoidal current, flux, and
mmf. Let the flux and mmf be given by

ϕ (t) = ϕ1 cosωt = Re [ϕ1 exp (jωt)] (3)

F (t) = F1 cos (ωt+ θ) = Re [F1 exp (jθ) exp (jωt)] (4)

where θ is the angle by which the mmf leads the flux, or alter-
nately the angle by which the flux lags the mmf. In general, θ is
a function of the frequency ω. The corresponding voltage and
current are given by

v (t) = N
dϕ (t)

dt
= −ωNϕ1 sinωt

= Re [jωNϕ1 exp (jωt)] (5)



444 JOURNAL OF THE AUDIO ENGINEERING SOCIETY, VOL. 50, NO. 6, 2002 JUNE

i (t) =
1

N
F (t)

=
F1
N
cos (ωt+ θ)

= Re

·
F1
N
exp (jθ) exp (jωt)

¸
(6)

It follows that the phasor voltage and current, respectively, are
given by

V = jωNϕ1 (7)

I =
F1
N
exp (jθ) =

F1
N
(cos θ + j sin θ) (8)

For a constant impressed voltage, the current in the coil is
proportional to the admittance Y (jω) given by

Y (jω) =
I

V

=
F1

jωN2ϕ1
exp (jθ)

=
F1

N2ϕ1

µ
sin θ

ω
− j

cos θ

ω

¶
(9)

It follows that the equivalent circuit of the inductor can be rep-
resented as a parallel resistor and inductor given by

R =
ωN2ϕ1
F1 sin θ

(10)

L =
N2ϕ1
F1 cos θ

(11)

Because R and Lmust be positive, it can be seen that the angle
θ must satisfy the condition 0 ≤ θ ≤ 90o. These equations are
used in the following as the basis for the circuit model for the
lossy inductance of a loudspeaker voice coil. The key in the
development of the model is the frequency dependence of the
ratio of flux to mmf in the core, i.e. in the frequency dependence
of ϕ1/F1.

III. THE LOSSY INDUCTOR MODEL
The author teaches a senior elective audio engineering course

at Georgia Tech where students are required to bring a loud-
speaker driver into the laboratory and measure its small-signal
parameters. After the acquisition of equipment that provided
the capability of making detailed automated measurements of
voice-coil impedance at high frequencies, it was noticed that
the phase of the impedance of drivers approached a constant at
high frequencies after the series resistance of the coil and the
motional impedance term are subtracted. For a lossless voice-
coil inductance, this phase should be 90o. However, experimen-
tally observed values were usually in the 60o to 70o range. By
coincidence, it was observed that the phase could be predicted
from the slope of the log-log plot of the magnitude of the im-
pedance versus frequency. This slope, when multiplied by 90o,
predicted the phase. This interesting and puzzling relationship
was explained when the author remembered Bode’s gain-phase
integral [5] from an undergraduate course in control systems.
This ingenious integral is the basis of the lossy inductor model
that is described in this section.

By Eq. (9), the admittance of the lossy inductor has a mag-
nitude and phase given by

|Y (jω)| =
p
Y (jω)Y ∗ (jω) =

F1
ωN2ϕ1

(12)

β = arg [Y (jω)]

= tan−1
½
Im [Y (jω)]

Re [Y (jω)]

¾
= θ − π

2
(13)

If the ratio of ϕ1 to F1 is independent of frequency, it can be
seen that |Y (jω)| is inversely proportional to ω. In this case,
the slope of the plot of ln |Y (jω)| versus ln (ω) is−1.
Because there is no evidence that a two-terminal passive

lumped element network can have an admittance or impedance
transfer function that is not minimum phase, it will be assumed
here that Y (jω) represents a minimum-phase transfer function.
In this case, the phase β is related to the magnitude by Bode’s
gain-phase integral

β =
1

π

Z ∞
−∞

dα

du
ln
³
coth

¯̄̄u
2

¯̄̄´
du (14)

where α = ln |Y (jω)| and u = ln (ω). For the case ϕ1/F1 =
a constant, |Y (jω)| ∝ 1/ω in Eq. (12), and it follows that
dα/du = −1. In this case, Bode’s integral predicts β = −π/2,
where the relationZ ∞

−∞
ln
³
coth

¯̄̄u
2

¯̄̄´
du =

π2

2
(15)

has been used. By Eq. (13), β = −π/2 results in θ = 0. Thus
by Eqs. (10) and (11), R is an open circuit and L is a con-
stant. In this case, the inductor is lossless. It follows that losses
require the ratio of flux to mmf to be frequency dependent.
For a lossy inductor, the most general model for the fre-

quency dependence of the ratio of flux to mmf is a power se-
ries in ω. To model an impedance which has a phase that is
independent of frequency, it follows from Bode’s integral that
the power series must have only one term. It is assumed here
that ϕ1/F1 = Kωn−1/N2, where n andK are constants. It has
been observed that this choice leads to excellent agreement with
experimental data and an example is presented in the following
which illustrates this. In this case, it follows from Eq. (12)
that |Y (jω)| = 1/ (Kωn) so that dα/du = −n and Bode’s
integral predicts β = −nπ/2. By Eq. (13), this results in
θ = (1− n)π/2 . Thus, Eq. (9) for Y (jω) can be written

Y (jω) =
1

jωKωn−1
exp

·
j
(1− n)π

2

¸
=

1

(jω)nK

=
1

Kωn

h
cos
³nπ
2

´
− j sin

³nπ
2

´i
(16)

It follows that the equivalent circuit of the inductor consists of
a parallel resistor Rp and inductor Lp given by

Rp =
Kωn

cos (nπ/2)
(17)
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Lp =
Kωn−1

sin (nπ/2)
(18)

For both Rp and Lp to be positive, n must satisfy 0 ≤ n ≤ 1.
For n = 1, Rp = ∞ and Lp is independent of ω. For n = 0,
Lp = ∞ and Rp is independent of ω. It can be concluded
that the losses increase as n decreases, causing the inductor to
change from a lossless inductor into a resistor as n decreases
from 1 to 0. The equivalent circuit of the inductor is shown in
Fig. 5(a).

Fig. 5. Equivalent circuits of the lossy inductor. (a) Parallel model. (b) Series
model.

From Eq. (9), it follows that the impedance of the lossy in-
ductor is given by

Z (jω) =
1

Y (jω)

= K (jω)n

= Kωn
h
cos
³nπ
2

´
+ j sin

³nπ
2

´i
(19)

Thus the equivalent circuit can also be represented by a series
resistor Rs and inductor Ls given by

Rs = Kωn cos
³nπ
2

´
(20)

Ls = Kωn−1 sin
³nπ
2

´
(21)

For n = 1, Rs = 0 and Ls is independent of ω. For n = 0,
Ls = 0 and Rs is independent of ω. The series equivalent
circuit of the inductor is shown in Fig. 5(b). For n = 1/2, the
expression for Z (jω) reduces to the one derived in [3]. For this
case, the real and imaginary parts of Z (jω) are equal and vary
as
√
ω.

For a sinusoidal flux having a peak amplitude ϕ1, the peak
amplitude of the impressed voltage is ωNϕ1. The average
power dissipated in the inductor is thus given by

P =
(ωNϕ1)

2

2Rp

=
(Nϕ1)

2 cos (nπ/2)

2K
ω2−n (22)

As an example, Fig. 6 shows a log-log plot of experimental
transformer core loss data given in [6] for losses in laminated
silicon steel for a constant impressed flux at four frequencies.
The straight line approximation to the data has a slope of 1.24.
For this case, it follows that n = 2 − 1.24 = 0.76. Although

the range of frequencies for the data was much lower than the
range of interest in loudspeaker drivers, this value of n is close
to values observed by the author for some drivers. In particular,
it corresponds exactly to the value measured for one sample of
an 18 inch JBL model 2241H Professional Series driver.

Fig. 6. Plot of log (P ) versus log (f ) for experimental transformer core loss
data presented in [6].

Although the parallel model corresponds to the traditional
model for a lossy inductor, the series and parallel models are
equivalent. The parametersK and n for a driver can be obtained
from measured voice-coil impedance or admittance data. The
method described in the following uses impedance data.

IV. INDUCTOR PARAMETER ESTIMATION
In general, the voice-coil impedance of a driver on an infinite

baffle can be written [7]

ZVC (s) = RE + ZL (s)

+
RES (1/QMS) (s/ωS)

(s/ωS)
2 + (1/QMS) (s/ωS) + 1

(23)

where s = jω, RE is the voice-coil resistance, ZL (s) is the
impedance of the lossy inductor, ωS is the fundamental reso-
nance frequency of the driver, QMS is its mechanical quality
factor, and RES is the amount by which the impedance peaks
up at resonance. The procedure described in the following for
determining n and K assumes that RE , RES , ωS , and QMS

are known.
It follows from Eq. (23) that the lossy inductor impedance

ZL (jω) can be written

ZL (jω) = ZV C (jω)−RE

− RES (1/QMS) (jω/ωS)

(jω/ωS)
2 + (1/QMS) (jω/ωS) + 1

(24)

The natural logarithms of ZL (jω) and the model impedance
Z (jω) given by Eq. (19), respectively, are given by

ln [ZL (jω)] = ln |ZL (jω)|+ j arg [ZL (jω)] (25)

ln [Z (jω)] = ln (K) + n ln (ω) + j
nπ

2
(26)

If ln [ZL (jω)] is known over a band of frequencies for a par-
ticular driver and the parameters n and K can be determined
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such that ln [Z (jω)] − ln [ZL (jω)] = 0 over that band, then
Z (jω) is an exact model for the inductor impedance over the
band. A method for determining n and K that minimizes the
mean magnitude-squared difference between the functions is
described below.
Let ZV C (jω) be measured at a set ofN frequencies and the

value of ZL (jω) calculated for each. An error function � can
be defined as follows:

� =
X
i

¯̄̄
ln [Z (jωi)]− ln [ZL (jωi)]

¯̄̄2
=

X
i

½ h
ln (K) + n ln (ωi)− ln |ZL (jωi)|

i2
+
h nπ

2
− arg [ZL (jωi)]

i2 ¾
(27)

For minimum error between the measured impedance and
the model impedance, the conditions ∂�/∂n = 0 and
∂�/∂ [ln (K)] = 0 must hold. These conditions lead to the
solutions

n =
1

∆

· X
i

ln |ZL (jωi)| ln (ωi)

− 1
N

X
i

ln |ZL (jωi)| ×
X
i

ln (ωi)

+
π

2

X
i

arg [ZL (jωi)]

¸
(28)

ln (K) =
1

N

"X
i

ln |ZL (jωi)|− n
X
i

ln (ωi)

#
(29)

where∆ is given by

∆ =
X
i

[ln (ωi)]
2 − 1

N

"X
i

ln (ωi)

#2
+N

³π
2

´2
(30)

When these equations are satisfied, the curves of the magni-
tude and phase of the model impedance Z (jω) fit those of the
measured impedance ZL (jω) in a minimum mean-squared er-
ror sense. Note that the error is simultaneously minimized for
a log-log plot of |ZL (jω)| and a linear-log plot of the phase of
ZL (jω). The above equations are used in the following sec-
tion to illustrate an application of the lossy inductor model to
an example driver.

V. A NUMERICAL EXAMPLE
The driver selected for this example is the Eminence model

10290. This is a 10 inch driver having a 38 ouncemagnet and an
accordion suspension. Its measured parameters are RE = 5.08
Ω, fS = 35.2 Hz, RES = 32.0 Ω, and QMS = 2.80. Fig.
7 shows plots of the measured values of Re [ZV C (jω)−RE ]
and the calculated values of Re [ZL (jω)] defined in Eq. (24).
Fig. 8 shows corresponding plots of Im [ZVC (jω)−RE ] and
Im [ZL (jω)]. In the region around the resonance frequency,
some ripple in the curves for ZL (jω) is evident. While some of
this can be attributed to randommeasurement errors and loss of

precision when close numbers are subtracted, a major cause is
probably the somewhat crude model for ZV C (jω) in Eq. (23)
used to calculate ZL (jω). For example, RES is not a constant,
in general. In addition, suspension creep most likely affects the
fit of the model impedance around resonance. Also frequency
dependence of the suspension compliance and resistance make
it difficult to estimate or even define a precise resonance fre-
quency.

Fig. 7. Linear-log plots of Re [ZVC (j2πf) −RE ] (circles) and
Re [ZL (j2πf)] (boxes) versus frequency.

Fig. 8. Linear-log plots of Im [ZVC (j2πf )−RE ] (circles) and
Im [ZL (j2πf )] (boxes) versus frequency.

The frequency range chosen for determination of n and K
from the measured data was the range from 2 kHz to 20 kHz.
This region was chosen to minimize the effect on the calcula-
tions of a “jog” in the measured phase below 2 kHz. There were
21 measurement points in the range. With the assistance of
Mathcad, the values obtained from Eqs. (28) through (30) were
n = 0.688 andK = 0.0235. Figs. 9 and 10 show the measured
magnitude and phase of the impedance ZL (jω) in this range
plotted as circles and those calculated from Eq. (19) plotted
as solid lines. The magnitude approximation shows excellent
agreement with the measured values. The measured phase val-
ues exhibit a slight ripple about the calculated value of 62o,
some of which is likely a remnant of the “jog” in the phase be-
low 2 kHz. The rms phase deviation is 0.66o, or just over 1%, a
figure which statistically indicates excellent agreement.
Figures 11 and 12 show the magnitude and phase of the mea-

sured impedance and the magnitude and phase predicted by Eq.
(23) for the frequency range from 15 Hz to 20 kHz. The mea-
sured values are plotted as circles and the calculated values as
solid lines. The figures show excellent agreement between the
measured values and the values predicted by the model equa-
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Fig. 9. Log-log plots of the calculated |ZL| (circles) and the approximating
function (solid line) versus frequency for the range 2 kHz to 20 kHz.

Fig. 10. Linear-log plots of the calculated phase of ZL (circles) and the
approximating function (solid line) versus frequency for the range 2 kHz to 20
kHz.

tions. Indeed, examination of the figures shows better agree-
ment in the high-frequency range where the impedance of the
inductor dominates. Examination of Fig. 12 shows a rising
asymptotic behavior in the high-frequency phase whereas Fig.
(10) exhibits a constant phase. This difference is caused by
the phase of the motional impedance of the voice-coil, which
is subtracted out in Fig. 10. Above the fundamental resonance
frequency, the phase of the motional impedance is negative, ap-
proaching zero as frequency is increased, thus causing the rising
behavior in the high-frequency phase in Fig. 12. The latter fig-
ure shows the “jog” in the phase between 1.4 and 1.6 kHzwhich
is not shown in Fig. 10. This is because the points chosen for
Fig. 10 were in the range from 2 kHz to 20 kHz.
The author has had a great deal of experience with student

projects involving loudspeaker measurements and has found the
lossy inductor model described here to give excellent results. It
is felt that the “jog” in the phase in Fig. 12 between 1.4 and 1.6
kHz was due to a resonance effect in the diaphragm and that it
was responsible for the slight ripple observed in Fig. 10. The
experimental data shown here were measured with a MLSSA
analyzer. A repeat of the measurements with an Audio Preci-
sion System II analyzer showed an almost identical behavior.
Similar “jogs” in the measured phase have been observed with
many drivers. Indeed, some drivers exhibit multiple “jogs” in

Fig. 11. Linear-log plots of the measured |ZV C | (circles) and the approximat-
ing function (solid line) versus frequency.

Fig. 12. Linear-log plots of the measured phase of ZVC (circles) and the
approximating function (solid line) versus frequency.

the phase response, some of which are pronounced.

VI. A SPICE MODEL AND SIMULATION EXAMPLE

A SPICE model for the lossy inductor is described in this
section and a simulation of a closed-box woofer system is pre-
sented to illustrate the effect of the inductor losses on the fre-
quency response of a driver. Fundamentals of SPICE simula-
tions of loudspeaker systems are covered in [1] and [8]. Fig. 13
shows a voltage controlled current source connected between
nodes labeled N1 and N2. If the current through the source is
equal to the voltage across it divided by the impedance of the
lossy inductor given by Eq. (19), then the source simulates the
inductor. The analog behavioral modeling feature of PSpice can
be used to implement this operation with the line

GZE N1 N2 LAPLACE {V(N1,N2)}={1/(K*PWR(S,n))}

where numerical values must be used forK and n.

Fig. 13. SPICE model for the lossy inductor.
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The SPICE circuit for the simulation is shown in Fig. 14. A
15 inch driver in a 2 foot3 box having a Butterworth alignment
with a lower −3 dB cutoff frequency of 40 Hz is assumed. The
driver parameters are: voice-coil resistance RE = 7 Ω, mo-
tor product Bc = 21.6 T·m, diaphragm mass MMD = 197
grams, suspension resistance RMS = 8.07 N·s/m, suspension
compliance CMS = 4.03 × 10−4 m/N, and diaphragm piston
area SD = 0.0707 m2. The box parameters are: acoustic mass
MAB = 5.77 kg/m4, acoustic resistance RAB = 1780 N·s/m5,
and acoustic compliance CAB = 4.03 × 10−7 m5/N. The re-
sistor RAL is necessary to prevent a floating node in SPICE.
Its value was chosen to be 4 × 106 N·s/m5, which is large
enough to be considered an open circuit in the frequency re-
sponse calculations. This resistor can be considered to model
air leaks in the enclosure. The front air-load mass parameters
are MA1 = 2.13 kg/m4, RA1 = 2540 N·s/m5, RA2 = 5760
N·s/m5, and CA1 = 1.43× 10−7 m5/N.

Fig. 14. SPICE circuit for the example simulation.

The SPICE deck for the simulation is given in Table I. The
lossy inductor is modeled by the voltage-controlled current
source GZE between nodes 2 and 3. The current through GZE,
i.e. through LE , is given by the voltage V(2,3) divided by
K*PWR(S,n), where S is the complex frequency and numer-
ical values must be supplied for K and n. The + sign on the
line below GZE indicates a continued line. Five values of n be-
tween 1.0 and 0.5 were chosen for the simulations. The values
are n = 1, 0.875, 0.75, 0.625, and 0.5. For n = 1, the value
K = 0.001 was used, corresponding to a lossless inductor with
a value of 1 mH. For the other values of n, K was computed
so that the SPL curves intersect at the frequency for which
|RE +K (jω)

n| = 3RE . This choice was made because it
results in an intersection point at a frequency that is approxi-
mately the geometric mean of 1 kHz and 10 kHz, i.e. midway
between these frequencies on a log scale. The K values are
K = 0.001, 0.00322, 0.0104, 0.0336, and 0.110.
The on-axis SPL at 1 meter is given by [1]

SPL = 20 log

µ
ρ0fUD
pref

¶
(31)

where ρ0 = 1.18 kg/m3 is the density of air, f is the fre-
quency, UD is the volume velocity output from the diaphragm,
and pref = 2× 10−5 Pa is the reference pressure. The SPL can

TABLE I
SPICE DECK FOR THE CLOSED BOX SIMULATION

CLOSED-BOX SIMULATION *ACOUSTICAL CIRCUIT
*ELECTRICAL CIRCUIT FSDUD 13 10 VD2
VEG 1 0 AC 1V +707E-4
RE 1 2 7 LMA1 10 12 2.13
GZE 2 3 LAPLACE {V(2,3)} RA1 10 11 25400
+={1/(K*PWR(S,n))} RA2 11 12 5760
HBLUD 3 4 VD2 21.6 CA1 10 11 0.143E-6
VD1 4 0 AC 0V LMAB 13 14 5.77
*MECHANICAL CIRCUIT RAB 14 15 1780
HBLIC 5 0 VD1 21.6 CAB 15 0 403E-9
LMMD 5 6 0.197 RAL 15 0 4E6
RMS 6 7 8.07 VD3 12 0 AC 0V
CMS 7 8 403E-6 .AC DEC 50 10 1E4
ESDPS 8 9 10 13 707E-4 .PROBE
VD2 9 0 AC 0V .END

be displayed in the PROBE graphics routine of PSpice with the
line [1]

20*LOG10(59E3*FREQUENCY*I(VD3))

where I(VD3) is the current through the voltage source VD3,
which is analogous to the volume velocity UD.
Simulations of the on-axis SPL at 1meter are shown in Fig.

15. The plots show that the flattest overall response is obtained
with the lossless inductor, i.e. the curve labeled n = 1. As
the losses increase, the flat midband region disappears and the
curves become depressed above the fundamental resonance fre-
quency. It is tempting to conclude from this figure that the in-
ductor losses should be minimized for the best response. How-
ever, the curves for the lower values of n are calculated for a
larger value of K. If K is not increased as n is decreased, the
inductor impedance decreases with n and the width of the flat
midband region increases.

Fig. 15. Simulated SPL responses for five values of n andK.

Corresponding plots for the magnitude of the voice-coil im-
pedance are shown in Fig. 16. This is displayed in the PROBE
graphics routine of PSpice with the line 1/I(VD1), i.e. the
source voltage (1 V) divided by the current through the voltage
source VD1, which is the voice-coil current.
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Fig. 16. Simulated voice-coil impedances for five values of n andK.

The author knows of no general relation betweenK and n so
that it is impossible, in general, to predict how changes in one
parameter affect the other. However, it has been observed that
drivers having lower values of n usually have higher values of
K .

VII. CONCLUSIONS
It has been shown and experimentally demonstrated that the

lossy inductance of a loudspeaker voice coil can be modeled
by two parameters K and n. The magnitude of the impedance
varies asKωn and the phase is nπ/2. The parametersK and n
can be determined from a linear regression analysis ofmeasured
voice-coil impedance data. In the author’s experience, typical
observed values of n lie in the range from 0.6 to 0.7. Changes
in the magnet structure of a driver can affect both K and n.
Future research for a general analytical relation between these
parameters for typical magnet structures could be of value in
loudspeaker driver design.

REFERENCES
[1] W. M. Leach, Jr., Introduction to Electroacoustics and Audio Amplifier

Design, Second Edition, Revised Printing, (Kendall/Hunt, Dubuque, IA,
2001).

[2] A. N. Thiele, “Loudspeakers in Vented Boxes, Parts I and II,” J. Audio Eng.
Soc., vol. 19, pp. 382–392 (1971 May); pp. 478–483 (1971 June).

[3] J. Vanderkooy, “A Model of Loudspeaker Impedance Incorporating Eddy
Currents in the Pole Structure,” J. Audio Eng. Soc., vol. 37, pp. 119–128
(1989 March).

[4] J. R. Wright, “An Empirical Model for Loudspeaker Motor Impedance,” J.
Audio Eng. Soc., vol. 38, pp. 749–754 (1990 Oct.).

[5] H. W. Bode, Network Analysis and Feedback Amplifier Design, (D. Van
Nostrand, NY, 1945).

[6] A. E. Fitzgerald and C. Kingsley, Electric Machinery, (McGraw-Hill, NY,
1952).

[7] R. H. Small, “Direct-Radiator Loudspeaker System Analysis,” J. Audio
Eng. Soc., vol. 20, pp. 383-395, (1972 June).

[8] W. M. Leach, Jr., “Computer-Aided Electroacoustic Design with SPICE,”
J. Audio Eng. Soc., vol. 39, pp. 551–563, (1991 July/Aug.).


