## Contents

1 Basic Principles of Sound  
1.1 Sound ............................................ 1  
1.2 Sources of Sound  ..................................... 1  
1.3 Velocity of Sound  ..................................... 2  
1.4 Frequency of Sound  ..................................... 2  
1.5 Pitch ............................................. 3  
1.6 Human Speech ....................................... 4  
1.7 Frequency Bands ...................................... 4  
1.8 Audio Sub Bands ...................................... 6  
1.9 Sound Pressure Level .................................... 7  
1.10 Equal Loudness Contours  ................................. 8  
1.11 Loudness Levels ..................................... 10  
1.12 Audio Test Signals ..................................... 11  
1.13 Problems .......................................... 14  

2 Fundamentals of Acoustics  
2.1 Basic Equations of Acoustics ............................... 17  
2.2 The Acoustic Wave Equation ..................................... 18  
2.3 The Plane Wave ...................................... 19  
2.4 Specific Impedance ...................................... 20  
2.5 Acoustic Energy ...................................... 20  
2.6 Acoustic Intensity ..................................... 21  
2.7 Wavelength ......................................... 21  
2.8 Particle Displacement .................................... 22  
2.9 The Omni-Directional Spherical Wave ........................ 22  
2.10 Volume Velocity ..................................... 23  
2.11 The Simple Spherical Source ............................. 24  
2.12 Acoustic Images ...................................... 25  
2.13 The Plane Circular Piston .................................. 26  
2.14 The Pattern Beamwidth .................................. 29  
2.15 Fresnel Diffraction Effects .............................. 30  
2.16 Acoustic Reflections .................................... 32  
2.17 Problems .......................................... 34  

3 Analogous Circuits of Acoustical Systems ..................................... 37  
3.1 Acoustic Sources ..................................... 37  
3.2 Acoustic Impedance ..................................... 38  
3.3 The Plane Wave Tube .................................... 39  
3.4 Acoustic Resistance .................................... 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 Acoustic Compliance</td>
<td>44</td>
</tr>
<tr>
<td>3.6 Acoustic Mass</td>
<td>45</td>
</tr>
<tr>
<td>3.7 Acoustic Impedance on a Piston in a Baffle</td>
<td>48</td>
</tr>
<tr>
<td>3.8 Radiation Impedance on a Piston in a Tube</td>
<td>50</td>
</tr>
<tr>
<td>3.9 Radiation Impedance on a Piston in Free Air</td>
<td>51</td>
</tr>
<tr>
<td>3.10 Problems</td>
<td>52</td>
</tr>
<tr>
<td>4 Analogous Circuits of Mechanical Systems</td>
<td>55</td>
</tr>
<tr>
<td>4.1 Mechanical Sources</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Mass, Compliance, and Resistance</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Mechanical Systems</td>
<td>58</td>
</tr>
<tr>
<td>4.4 Electromagnetic-Mechanical Transducer</td>
<td>59</td>
</tr>
<tr>
<td>4.5 Crystal Electrostatic-Mechanical Transducer</td>
<td>62</td>
</tr>
<tr>
<td>4.6 Condenser Electrostatic-Mechanical Transducer</td>
<td>63</td>
</tr>
<tr>
<td>4.7 Mechno-Acoustic Transducer</td>
<td>67</td>
</tr>
<tr>
<td>4.8 Problems</td>
<td>68</td>
</tr>
<tr>
<td>5 Microphones</td>
<td>71</td>
</tr>
<tr>
<td>5.1 Classifications</td>
<td>71</td>
</tr>
<tr>
<td>5.2 Modeling Diaphragm Reflections</td>
<td>72</td>
</tr>
<tr>
<td>5.3 Diaphragm Back Acoustical Load</td>
<td>74</td>
</tr>
<tr>
<td>5.4 Diaphragm Mechanical Parameters</td>
<td>75</td>
</tr>
<tr>
<td>5.5 Condenser Microphone</td>
<td>75</td>
</tr>
<tr>
<td>5.6 Condenser Microphone SPICE Simulation</td>
<td>79</td>
</tr>
<tr>
<td>5.7 Condenser Microphone Buffer Amplifiers</td>
<td>81</td>
</tr>
<tr>
<td>5.8 Dynamic Microphone</td>
<td>82</td>
</tr>
<tr>
<td>5.9 Ribbon Microphone</td>
<td>84</td>
</tr>
<tr>
<td>5.10 Proximity Effect</td>
<td>88</td>
</tr>
<tr>
<td>5.11 Combination Microphone</td>
<td>89</td>
</tr>
<tr>
<td>5.12 Problems</td>
<td>91</td>
</tr>
<tr>
<td>6 Moving-Coil Loudspeakers</td>
<td>93</td>
</tr>
<tr>
<td>6.1 Construction</td>
<td>93</td>
</tr>
<tr>
<td>6.2 Analogous Circuits</td>
<td>96</td>
</tr>
<tr>
<td>6.3 Combination Analogous Circuit</td>
<td>97</td>
</tr>
<tr>
<td>6.4 Infinite Baffle Analogous Circuit</td>
<td>98</td>
</tr>
<tr>
<td>6.5 Low-Frequency Solution for $U_D$</td>
<td>99</td>
</tr>
<tr>
<td>6.6 Low-Frequency Bode Plots for $U_D$</td>
<td>100</td>
</tr>
<tr>
<td>6.7 Small-Signal Parameters</td>
<td>101</td>
</tr>
<tr>
<td>6.8 High-Frequency Solution for $U_D$</td>
<td>102</td>
</tr>
<tr>
<td>6.9 On-Axis Pressure</td>
<td>103</td>
</tr>
<tr>
<td>6.10 Pressure Transfer Function</td>
<td>103</td>
</tr>
<tr>
<td>6.11 Bode Plots of On-Axis Pressure</td>
<td>104</td>
</tr>
<tr>
<td>6.12 Filter Theory Description of $G(s)$</td>
<td>105</td>
</tr>
<tr>
<td>6.13 Cutoff Frequencies</td>
<td>106</td>
</tr>
<tr>
<td>6.14 Effect of Non-Zero Generator Resistance</td>
<td>107</td>
</tr>
<tr>
<td>6.15 Frequency of Peak Response</td>
<td>108</td>
</tr>
<tr>
<td>6.16 Voice-Coil Impedance</td>
<td>109</td>
</tr>
<tr>
<td>6.17 The Lossy Voice-Coil Inductance</td>
<td>111</td>
</tr>
<tr>
<td>6.18 On-Axis Pressure Sensitivity</td>
<td>112</td>
</tr>
<tr>
<td>6.19 Acoustic Power Response</td>
<td>113</td>
</tr>
</tbody>
</table>
CONTENTS

6.20 Reference Efficiency .................................................. 115
6.21 Diaphragm Displacement Function .................................. 116
6.22 Voice-Coil Electrical Power Rating ................................ 117
6.23 Displacement Limited Power Rating ............................... 118
6.24 SPICE Models ......................................................... 118
6.25 Problems ............................................................. 121

7 Closed-Box Loudspeaker Systems ...................................... 125
7.1 Modeling the Box ....................................................... 125
7.2 The Analogous Circuits ............................................... 127
7.3 The Volume Velocity Transfer Function ............................ 128
7.4 The On-Axis Pressure Transfer Function .......................... 130
7.5 Effect of the Box on the System Response ........................ 130
7.6 Sensitivity of the Lower Cutoff Frequency ....................... 132
7.7 System Design with a Given Driver ................................. 132
7.8 System Design From Specifications ................................. 135
7.9 A SPICE Simulation Example ....................................... 136
7.10 Problems ............................................................. 138

8 Vented-Box Loudspeaker Systems ...................................... 141
8.1 Modeling the Enclosure ............................................... 141
8.2 Effect of the Vent ..................................................... 142
8.3 The On-Axis Pressure Transfer Function .......................... 143
8.4 Voice-Coil Impedance Function ..................................... 145
8.5 The Magnitude-Squared Function .................................. 145
8.6 The B4 Alignment ...................................................... 146
8.7 The QB3 Alignments .................................................. 147
8.8 The Chebyshev Alignments .......................................... 148
8.9 Example Pressure Responses ........................................ 149
8.10 Design with a Given Driver ......................................... 150
8.11 Design from Specifications ......................................... 154
8.12 Vented-Box SPICE Example ....................................... 155
8.13 Problems ............................................................. 159

9 Crossover Networks ......................................................... 163
9.1 Role of Crossover Networks ......................................... 163
9.2 Passive Crossover Networks ......................................... 164
9.3 L-Pad Design .......................................................... 167
9.4 Effect of the Voice-Coil Impedance ................................. 169
9.5 Effect of the Driver Phase Response ............................... 170
9.6 Constant-Voltage and All-Pass Functions ......................... 175
9.7 Active Crossover Networks .......................................... 178
9.8 A SPICE Modeling Example ......................................... 180
9.9 Problems ............................................................. 184

10 Acoustic Horns ............................................................. 187
10.1 The Webster Horn Equation .......................................... 187
10.2 Salmon’s Family of Horns ............................................ 187
10.3 Finite Length Horn Size .............................................. 190
10.4 A Horn Analogous Circuit ........................................... 190
10.5 SPICE Examples ...................................................... 193
10.6 Horn Driving Units .................................................... 196
10.7 Mid-Frequency Range ........................................ 198
10.8 Condition for Maximum $P_{AR}$ ................................ 199
10.9 The Horn Efficiency ........................................... 199
10.10 The Low-Frequency Range .................................... 199
10.11 The High-Frequency Range .................................... 200
10.12 Low-Frequency System Design ................................ 201
  10.12.1 Design with a Given Driver ............................. 201
  10.12.2 System Design from Specifications ....................... 202
10.13 Problems ..................................................... 204

11 Audio Power Amplifiers ........................................... 205
  11.1 Power Specifications ......................................... 205
  11.2 Effects of Feedback ........................................... 207
    11.2.1 Feedback Amplifier Gain ................................ 207
    11.2.2 Effect of Feedback on Distortion and Noise ............ 208
    11.2.3 Effect of Feedback on Output Resistance ................. 209
  11.3 Amplifier Model .............................................. 210
    11.3.1 Open-Loop Transfer Function ............................ 210
    11.3.2 Gain Bandwidth Product .................................. 212
    11.3.3 Slew Rate .............................................. 212
    11.3.4 Relations between Slew Rate and Gain-Bandwidth Product 213
    11.3.5 Closed-Loop Transfer Function .......................... 214
    11.3.6 Transient Response ....................................... 215
    11.3.7 Input Stage Overload .................................... 215
    11.3.8 Full Power Bandwidth .................................... 216
    11.3.9 Effect of an Input Low-Pass Filter ....................... 218
    11.3.10 JFET Diff Amp .......................................... 221
    11.3.11 Diff Amp with Current-Mirror Load ..................... 222
  11.4 Signal Tracing ................................................ 223
  11.5 The Stability Criterion ....................................... 226
    11.5.1 The Bode Stability Theorem .............................. 226
    11.5.2 Single-Pole Amplifier .................................... 229
    11.5.3 Two-Pole Amplifier ...................................... 229
    11.5.4 An Alternate Stability Criterion ......................... 231
  11.6 Techniques for Compensating Feedback Amplifiers ........... 233
    11.6.1 Gain Constant Reduction ................................ 234
    11.6.2 First Pole Lag Compensation ............................ 236
    11.6.3 Second Pole Lead Compensation .......................... 237
    11.6.4 Feedforward Compensation ............................... 237
  11.7 Output Stage Topologies ...................................... 238
    11.7.1 Common-Collector Stage .................................. 238
    11.7.2 Common-Emitter Stage .................................... 241
    11.7.3 Quasi-Complementary Output Stage ....................... 241
    11.7.4 MOSFET Output Stages .................................... 242
  11.8 Voltage Gain Stage ............................................ 242
  11.9 Input Stage ................................................... 246
  11.10 Completed Amplifier Circuit ................................... 247
  11.11 Protection Circuits ........................................... 248
    11.11.1 BJT Protection Circuits ................................ 250
    11.11.2 MOSFET Protection Circuits ............................. 253
  11.12 Power Supply Design ......................................... 254
11.13 Decoupling and Grounding ........................................... 256
11.14 Power Dissipation and Efficiency ................................. 258
11.15 The Class-D Amplifier ................................................. 260
11.16 Amplifier Measurements ............................................. 265
11.17 Problems ...................................................................... 270

12 A Loudspeaker Potpourri .................................................. 277
  12.1 The Isobaric Connection ............................................... 277
    12.1.1 The Acoustical Analogous Circuit .............................. 277
    12.1.2 The Small-Signal Parameters ................................... 278
    12.1.3 A SPICE Simulation Example ................................... 279
  12.2 4th-Order Bandpass Systems ......................................... 279
    12.2.1 System Description ............................................... 279
    12.2.2 Output Volume Velocity ......................................... 280
    12.2.3 On-Axis Pressure .................................................. 282
    12.2.4 Fourth-Order Band-Pass Functions ............................. 282
    12.2.5 System Parameters ............................................... 283
    12.2.6 Design Procedure ................................................. 283
  12.3 6th-Order Bandpass Systems ......................................... 284
    12.3.1 System Transfer Function ....................................... 284
    12.3.2 System Alignment Functions .................................... 286
    12.3.3 System Design from Specifications ............................ 287
    12.3.4 Example System Design ......................................... 288
  12.4 Passive Radiator Systems ............................................. 289
    12.4.1 System Transfer Function ....................................... 289
    12.4.2 Example System Design ......................................... 292
  12.5 Assisted Vented-Box Alignments ................................... 293
    12.5.1 System Transfer Functions ..................................... 293
    12.5.2 5th-Order Alignments .......................................... 294
    12.5.3 6th-Order Alignments .......................................... 295
    12.5.4 The Vented-Box System Parameters .......................... 296
    12.5.5 Example Design from Specifications .......................... 296
  12.6 A Closed-Box System Equalizer ..................................... 298
    12.6.1 Equalizer Transfer Function .................................... 298
    12.6.2 Equalizer Circuit ................................................. 299
    12.6.3 Example Realization ............................................. 299
  12.7 Driver Parameter Measurements ..................................... 301
    12.7.1 Basic Theory ..................................................... 301
    12.7.2 The Measurement Test Set ...................................... 302
    12.7.3 Measuring $R_E$, $f_s$, $Q_{MS}$, $Q_{ES}$, and $Q_{TS}$ .......... 303
    12.7.4 Measuring $V_{AS}$ ................................................. 304
    12.7.5 Conversion to Infinite-Baffle Parameters .................... 305
    12.7.6 Measuring the Voice-Coil Inductance ......................... 305
    12.7.7 Parameter Measurement Summary Sheet ........................ 308

A References ................................................................. 309

B Electroacoustic Glossary of Symbols .................................. 311
Preface

This book is an outgrowth of a senior level elective course in audio engineering that I have taught to electrical engineering students at the Georgia Institute of Technology. The first part of the book covers basic acoustics. The emphasis is on that part of acoustics that pertains to the field of audio engineering. Most of the remainder of the book concerns the application of the tools of electroacoustics to the analysis and synthesis of microphones, loudspeakers, crossover networks, and acoustic horns. The book concludes with a chapter that covers the basic theory of audio amplifier design.

Electroacoustics is that part of acoustics that pertains to the modeling of acoustical systems with electrical circuits. Because most acoustical devices have a mechanical part, the modeling of mechanical systems with electrical circuits is a basic part of electroacoustics. Separate chapters in the book are devoted to analogous circuits of mechanical systems and to analogous circuits of acoustical systems. The traditional approach in these circuits has been to use transformers to model the coupling between the electrical, the mechanical, and the acoustical parts. A major departure in this book is the use of controlled sources to model the coupling. An advantage of this approach is that it avoids the need for mobility analogs in the acoustical circuits. In addition, I have found that students have much less difficulty with the approach. Perhaps this is because the controlled-source circuits are more intuitive than the transformer circuits. In addition, the circuits can be easily analyzed with circuit simulation software such as SPICE.

Electroacoustic models are developed for the more common microphone types and for the moving-coil loudspeaker driver. Separate chapters cover closed-box and vented-box loudspeaker systems. Although the emphasis is on basic system theory, practical methods of design are also presented. Because crossover networks are such an important part of loudspeaker systems, a chapter is devoted to crossover networks. Acoustic horns are a vital component in public address systems. A chapter is devoted to horn models. In all cases, SPICE simulation examples are presented where appropriate.

One might ask why a chapter on audio amplifiers is included in a book that is primarily concerned with electroacoustics. Without a power amplifier, a loudspeaker could not make sound. Therefore, one might say that the role of an amplifier in a system is just as important as the role of a loudspeaker. The chapter on amplifiers is not intended to be an in-depth chapter on electronic theory. Instead, it addresses the more important aspects of amplifier design with an emphasis on the basic operation of the circuits. Practical examples are presented that illustrate how some of the pitfalls of amplifier design can be avoided.

This revised printing corrects errors in the second edition. The chapter on audio amplifiers has been revised. Some of the appendices have been combined to form a new chapter. An errata and updates to the text can be found at http://users.ece.gatech.edu/~mleach/audiotext/.

W. Marshall Leach, Jr.
April 2001