## ECE3040 Assignment 4

- 1. (a) Calculate the drain current in an NMOS transistor if  $K = 125 \,\mu\text{A}/\text{V}^2$ ,  $V_{TO} = -2 \,\text{V}$ ,  $\lambda = 0, V_{GS} = 0 \,\text{V}$ , and  $V_{DS} = 6 \,\text{V}$ . [0.5 mA] (b) Repeat assuming  $\lambda = 0.025 \,\text{V}^{-1}$ . [0.575 mA]
- 2. An *n*-channel MOSFET has  $K = 125 \,\mu\text{A}/\text{V}^2$ ,  $V_{TO} = 1 \,\text{V}$ , and  $\lambda = 0.02 \,\text{V}^{-1}$ . At what drain current will the MOSFET no longer be able to provide any voltage gain when connected as a common-source amplifier? Note, the maximum gain is denoted by  $\mu_F$  and it is given by  $\mu_F = g_m r_0$ . The object here is to determine the maximum  $I_D$  such that  $\mu_F \leq 1$ . This will require you to select  $V_{DS}$  that minimizes  $\mu_F$  before solving for  $I_D$ . [1.25 A]
- 3. An *n*-channel MOSFET has a resistor  $R_D = 60 \text{ k}\Omega$  connected between its drain and a power supply voltage  $V^+ = 18 \text{ V}$ . At what Q-point will  $r_0 || R_D = 50 \text{ k}\Omega$  if the transistor has  $\lambda = 0.02 \text{ V}^{-1}$ ? Use the relations  $r_0 = (\lambda^{-1} + V_{DS})/I_D$ , and  $V_{DS} = 18 I_D R_D$ . [0.189 mA, 6.67 V]
- 4. The drain current in an *n*-channel JFET can be written  $i_D = I_{DSS} (1 v_{GS}/V_P)^2$ , where  $I_{DSS} = I_{DSS0} (1 + \lambda v_{DS})$ . Show that the expression for the JFET can be represented in exactly the same form as that of the MOSFET using the substitution  $V_{TO} = V_P$  and  $K = I_{DSS}/V_P^2$ .
- 5. For  $K = 1.78 \text{ mA}/\text{V}^2$ ,  $V_{TO} = 1.5 \text{ V}$ ,  $V^+ = 18 \text{ V}$ ,  $R_1 = 110 \text{ k}\Omega$ ,  $R_2 = 68 \text{ k}\Omega$ ,  $R_D = 0$ , and  $R_S = 1 \text{ k}\Omega$ , solve for  $I_D$  and verify that the MOSFET is biased in the saturation region, i.e. its active mode.  $[I_D = 3.897 \text{ mA}, V_{DS} = 14.10 \text{ V}, V_{GS} - V_{TO} = 1.480 \text{ V}]$



- 6. Add a resistor  $R_3 = 20 \,\mathrm{k\Omega}$  from gate to source for the circuit in problem 5. Solve for  $I_D$  and verify that the MOSFET is biased in the saturation region.  $[I_D = 0.492 \,\mathrm{mA}, V_{DS} = 17.41 \,\mathrm{V}, V_{GS} V_{TO} = 0.526 \,\mathrm{V}]$
- 7. Problem 4.26 in Jaeger. Assume  $K' = 25 \times 10^{-6} \,\text{A}/\text{V}^2$ .
- 8. Problem 4.34 in Jaeger. Note,  $K = K_n/2 = 250 \times 10^{-6} \text{ A}/\text{V}^2$ .
- 9. Problem 4.35 in Jaeger. Assume  $K' = 25 \times 10^{-6} \text{ A}/\text{V}^2$ . [(a)  $I_D = 103 \,\mu\text{A}$ , (b)  $I_D = 104 \,\mu\text{A}$ , (c)  $I_D = 107 \,\mu\text{A}$ ]

- 10. Problem 4.41 parts (a) and (b) in Jaeger. Assume  $K' = 25 \times 10^{-6} \text{ A/V}^2$ . Hint: Show first that the device is operated in the triode region.
- 11. It is given that  $K = 0.001 \text{ A}/\text{V}^2$ ,  $V_{TH1} = 1.25 \text{ V}$ ,  $V_{TH2} = -1.25 \text{ V}$ ,  $V^+ = +24 \text{ V}$ ,  $V^- = -24 \text{ V}$ ,  $R_1 = 100 \text{ k}\Omega$ ,  $R_3 = 1 \text{ k}\Omega$ , and  $R_6 = 200 \Omega$ . We desire  $I_{D1} = 1.5 \text{ mA}$ ,  $I_{D2} = 5 \text{ mA}$ , and  $V_{DS2} = 12 \text{ V}$ . Show that  $R_2 = 1.108 \text{ M}\Omega$ ,  $R_4 = 1.324 \text{ k}\Omega$ ,  $R_5 = 7 \text{ k}\Omega$ , and  $V_{SD1} = 44.514 \text{ V}$ . Verify that both MOSFETs are in the saturation region.



- 12. Assume that you are given the values for  $V^+$ ,  $V^-$ , and all the resistor values in the circuit for problem 11. Solve for  $I_{D1}$ ,  $I_{D2}$ , and verify that both MOSFETs are in the saturation region.
- 13. Problem 13.76 in Jaeger.  $[I_D = 1.25 \text{ mA}, W/L = 250]$
- 14. Problem 13.81 in Jaeger. Assume that a resistor  $R_D$  connects from the MOSFET drain to  $V^+$ , the MOSFET source is grounded, and  $V_{DS} = V^+/2$ . Solve for  $I_D$  such that  $R_{out} = r_0 || R_D = 50 \text{ k}\Omega$ .