
Chapter 2

Characteristics of Physical Op-Amps

In the preceding chapter, the op-amp is treated as an ideal circuit element. Because the waveform of the
output voltage from a physical op-amp is never exactly the same as the waveform that would be expected
from an ideal op-amp, this assumption is never true in practice. Although most op-amp circuits can be
designed by assuming that the op-amps are ideal, the circuits never perform exactly as predicted because
of the non-ideal characteristics of the op-amps. Some of these characteristics are discussed in this chapter.
In addition, a linear controlled-source model of the op-amp is developed which can be used in computer
simulation programs such as SPICE.

2.1 Effects of Finite Gain and Bandwidth

2.1.1 Open-Loop Transfer Function

In our analysis of op-amp circuits this far, we have considered the op-amps to have an infinite gain and
an infinite bandwidth. This is not true for physical op-amps. In this section, we examine the effects of a
non-infinite gain and non-infinite bandwidth on the inverting and the non-inverting amplifier circuits. Fig.
2.1 shows the circuit symbol of an op-amp having an open-loop voltage-gain transfer function A (s). The
output voltage is given by

Vo = A (s) (V+ − V−) (2.1)

where complex variable notation is used. We assume here that A (s) can be modeled by a single-pole low-pass
transfer function of the form

A (s) =
A0

1 + s/ω0
(2.2)

where A0 is the dc gain constant and ω0 is the pole frequency. Most general purpose op-amps have a
voltage-gain transfer function of this form for frequencies such that |A (jω)| ≥ 1.

Figure 2.1: Op-amp symbol.
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2.1.2 Gain-Bandwidth Product

Figure 2.2 shows the Bode magnitude plot for A (jω). The radian gain-bandwidth product is defined as the
frequency ωx for which |A (jω)| = 1. It is given by

ωx = ω0

√
A20 − 1 � A0ω0 (2.3)

where we assume that A0 >> 1. This equation illustrates why ωx is called a gain-bandwidth product.
It is given by the product of the dc gain constant A0 and the radian bandwidth ω0. It is commonly
specified in Hz with the symbol fx, where fx = ωx/2π. Many general purpose op-amps have a gain-
bandwidth product fx � 1MHz and a dc gain constant A0 � 2 × 105. It follows from Eq. (2.3) that
the corresponding pole frequency in the voltage-gain transfer function for the general purpose op-amp is
f0 � 1× 106/

(
2× 105

)
= 5Hz.

Figure 2.2: Bode plot of |A (jω)|.

2.1.3 Non-Inverting Amplifier

Figure 2.3 shows the circuit diagram of a non-inverting amplifier. For this circuit, we can write by inspection

Vo = A (s) (Vi − V−) (2.4)

V− = Vo
R1

R1 +RF
(2.5)

Simultaneous solution for the voltage-gain transfer function yields

Vo
Vi

=
A (s)

1 +A (s)R1/ (R1 +RF )
=

1 +RF/R1
1 + (1 +RF /R1) /A (s)

(2.6)

For s = jω and |(1 +RF/R1) /A (jω)| << 1, this reduces to Vo/Vi � (1 +RF/R1). This is the gain which
would be predicted if the op-amp is assumed to be ideal.

When Eq. (2.2) is used for A (s), it is straightforward to show that Eq. (2.6) can be written

Vo
Vi

=
A0f

1 + s/ω0f
(2.7)

where A0f is the gain constant with feedback and ω0f is the radian pole frequency with feedback. These are
given by

A0f =
A0

1 +A0R1/ (R1 +RF )
=

1 +RF/R1
1 + (1 +RF/R1) /A0

(2.8)



2.1. EFFECTS OF FINITE GAIN AND BANDWIDTH iii

Figure 2.3: Non-inverting amplifier.

ω0f = ω0

(
1 +

A0R1
R1 +RF

)
(2.9)

It follows from these two equations that the radian gain-bandwidth product of the non-inverting amplifier
with feedback is given by A0fω0f = A0ω0 = ωx. This is the same as for the op-amp without feedback. Fig.
2.4 shows the Bode magnitude plots for both Vo/Vi and A (jω). The figure shows that the break frequency
on the plot for Vo/Vi lies on the negative-slope asymptote of the plot for A (jω).

Figure 2.4: Bode plot for |Vo/Vi|.

Example 1 At very low frequencies, an op-amp has the frequency independent open-loop gain A (s) = A0 =
2× 105. The op-amp is to be used in a non-inverting amplifier. The theoretical gain is calculated assuming
that the op-amp is ideal. What is the highest theoretical gain that gives an error between the theoretical gain
and the actual gain that is less than 1%?

Solution. The theoretical gain is given by (1 +RF /R1). The actual gain is always less than the theoretical
gain. For an error less than 1%, we can use Eq. (2.6) to write

1− 0.01 <
1

1 + (1 +RF/R1) / (2× 105)

This can be solved for the upper bound on the theoretical gain to obtain

1 +
RF
R1

< 2× 105
(

1

0.99
− 1

)
= 2020
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Example 2 An op-amp has a gain-bandwidth product of 1MHz. The op-amp is to be used in a non-inverting
amplifier circuit. Calculate the highest gain that the amplifier can have if the half-power or −3 dB bandwidth
is to be 20 kHz or more.

Solution. The minimum bandwidth occurs at the highest gain. For a bandwidth of 20 kHz, we can write
A0f × 20× 103 = 106. Solution for A0f yields A0f = 50.

Example 3 Two non-inverting op-amp amplifiers are operated in cascade. Each amplifier has a gain of 10.
If each op-amp has a gain-bandwidth product of 1MHz, calculate the half-power or −3dB bandwidth of the
cascade amplifier.

Solution. Each amplifier by itself has a pole frequency of 106/10 = 100 kHz, corresponding to a radian
frequency ω0f = 2π × 100, 000. The cascade combination has the voltage-gain transfer function given by

Vo
Vi

= 100

(
1

1 + s/ω0f

)2

The half-power frequency is obtained by setting s = jω and solving for the frequency for which |Vo/Vi|2 =
1002/2. If we let x = ω/ω0f , the resulting equation is

1002
(

1

1 + x2

)2
=

1002

2

This equation reduces to 1 + x2 =
√
2. Solution for x yields x = 0.644. It follows that the half-power

frequency is 0.644× 100 kHz = 64.4 kHz.

2.1.4 Inverting Amplifier

Figure 2.5(a) shows the circuit diagram of an inverting amplifier. Fig. 2.5(b) shows an equivalent circuit
which can be used to solve for V−. By inspection, we can write

Vo = −A (s)V− (2.10)

V− =

(
Vi
R1

+
Vo
RF

)
(R1‖RF ) (2.11)

These equations can be solved for the voltage-gain transfer function to obtain

Vo
Vi

=
− (1/R1)A (s) (R1‖RF )
1 + (1/RF )A (s) (R1‖RF )

=
−RF/R1

1 + (1 +RF /R1) /A (s)
(2.12)

For s = jω and |(1 +RF/R1) /A (jω)| << 1, the voltage-gain transfer function reduces to Vo/Vi � −RF/R1.
This is the gain which would be predicted if the op-amp is assumed to be ideal.

When Eq. (2.2) is used for A (s), it is straightforward to show that the voltage-gain transfer function
reduces to

Vo
Vi

=
−A0f

1 + s/ω0f
(2.13)

where A0f is the gain constant with feedback and ω0f is the radian pole frequency with feedback. These are
given by

A0f =
(1/R1)A0 (R1‖RF )

1 + (1/RF )A0 (R1‖RF )
=

RF/R1
1 + (1 +RF/R1) /A0

(2.14)

ω0f = ω0

(
1 +A0

R1‖RF
RF

)
= ω0

(
1 +A0

R1
R1 +RF

)
(2.15)
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Figure 2.5: (a) Inverting amplifier. (b) Equivalent circuit for calculating Vo.

Note that A0f is defined here as a positive quantity so that the negative sign for the inverting gain is retained
in the transfer function for Vo/Vi.

Let the radian gain-bandwidth product of the inverting amplifier with feedback be denoted by ω′x. It
follows from Eqs. (2.14) and (2.15) that this is given by ω′x = A0fω0f = ωxRF/ (RF +R1). This is less
than the gain-bandwidth product of the op-amp without feedback by the factor RF/ (RF +R1). Fig. 2.6
shows the Bode magnitude plots for Vo/Vi and for A (jω). The frequency labeled ω′0f is the break frequency
for the non-inverting amplifier with the same gain magnitude as the inverting amplifier. The non-inverting
amplifier with the same gain has a bandwidth that is greater by the factor (1 +R1/RF ). The bandwidth of
the inverting and the non-inverting amplifiers is approximately the same if R1/RF << 1. This is equivalent
to the condition that A0f >> 1.

Figure 2.6: Bode plot for |Vo/Vi|.

Example 4 An op-amp has a gain-bandwidth product of 1MHz. Compare the bandwidths of an inverting
and a non-inverting amplifier which use the op-amp for A0f = 1, 2, 5, and 10.

Solution. The non-inverting amplifier has a bandwidth of fx/A0f . The inverting amplifier has a band-
width of (fx/A0f ) × RF/ (R1 +RF ). If we approximate A0f of the inverting amplifier by A0f � RF/R1,
its bandwidth reduces to fx/ (1 +A0f ). The calculated bandwidths of the two amplifiers are summarized in
the following table.
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A0f Non-Inverting Inverting
1 1MHz 500 kHz
2 500 kHz 333 kHz
5 200 kHz 167 kHz
10 100 kHz 91 kHz

For the case of the ideal op-amp, the V− input to the inverting amplifier is a virtual ground so that the
input impedance Zin is resistive and equal to R1. For the op-amp with finite gain and bandwidth, the V−
terminal is not a virtual ground so that the input impedance differs from R1. We use the circuit in Fig.
2.5(a) to solve for the input impedance as follows:

Zin =
Vi
I1

=
Vi

(Vi − V−) /R1
=

R1
1− (V−/Vo) (Vo/Vi)

(2.16)

To put this into the desired form, we let V−/Vo = −1/A (s) and use Eq. (2.12) for Vo/Vi. The equation for
Zin reduces to

Zin = R1 +
RF

1 +A (s)
= R1 +

[
1

RF
+

(
RF
A0

+
RF
A0ω0

s

)−1]−1
(2.17)

where Eq. (2.2) has been used. It follows from this equation that Zin consists of the resistor R1 in series
with an impedance that consists of the resistor RF in parallel with the series combination of a resistor R2
and an inductor L given by

R2 =
RF
A0

(2.18)

L =
RF
A0ω0

(2.19)

The equivalent circuit for Zin is shown in Fig. 2.7(a). If A0 → ∞, it follows that R2 → 0 and L2 → 0
so that Zin → R1. The impedance transfer function for Zin is of the form of a high-pass shelving transfer
function given by

Zin (s) = RDC
1 + s/ωz
1 + s/ωp

(2.20)

where RDC is the dc resistance, ωp is the pole frequency, and ωz is the zero frequency. These are given by

RDC = R1 +
RF

1 +A0
(2.21)

ωp =
R2 +RF

L
= ω0 (1 +A0) (2.22)

ωz =
R2 +RF‖R1

L
= ω0

(
1 +

A0R1
R1 +RF

)
(2.23)

The Bode magnitude plot for Zin is shown in Fig. 2.7(b).

Example 5 At very low frequencies, an op-amp has the frequency independent open-loop gain A (s) = A0 =
2× 105. The op-amp is to be used in an inverting amplifier with a gain of −1000. What is the required ratio
RF/R1? For the value of RF/R1, how much larger is the input resistance than R1?

Solution. By Eq. (2.12), we have

−1000 = − RF/R1
1 + (1 +RF /R1) / (2× 105)
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Figure 2.7: (a) Equivalent input impedance. (b) Bode plot for |Zin|.

This can be solved for RF/R1 to obtain

RF
R1

=
2× 105 + 1

(2× 105/1000)− 1
= 1005

By Eq. (2.17), the input resistance can be written

Rin = R1

(
1 +

RF/R1
1 +A0

)
= R1

(
1 +

1005

1 + 2× 105

)
= 1.005R1

Example 6 An op-amp has a dc gain A0 = 2×105 and a gain bandwidth product fx = 1MHz. The op-amp
is used in the inverting amplifier of Fig. 2.5(a). The circuit element values are R1 = 1kΩ and RF = 100 kΩ.
Calculate the dc gain of the amplifier, the upper cutoff frequency, and the value of the elements in the
equivalent circuit for the input impedance. In addition, calculate the zero and the pole frequencies in Hz for
the impedance Bode plot of Fig. 2.7(b).

Solution. The dc voltage gain is −A0f . Eq. (2.14) can be used to calculate A0f to obtain

A0f =
2× 105 × (1k‖100k) /1k

1 + 2× 105 × (1k‖100k) /100k = 99.95

By Eqs. (2.3) and (2.15), the upper cutoff frequency f0f is given by

fof =
ω0f
2π

=
106

2× 105

(
1 + 2× 105

1k‖100k
100k

)
= 9.91 kHz

The element values in the equivalent circuit of Fig. 2.7(a) for the input impedance are as follows:

R1 = 1 kΩ, RF = 100 kΩ, R2 = 0.5 Ω, and L = 15.9 mH

where Eqs. (2.18) and (2.19) have been used for R2 and L. The pole and zero frequencies in the Bode
impedance plot are

fp = f0 (1 +A0) =
fx
A0

(1 +A0) = 1.00 MHz

fz = f0

(
1 +A0

R1
R1 +RF

)
= 9.91 kHz
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2.2 Effects of Finite Input Resistance

2.2.1 Differential Input Resistance

Because no signal currents flow in the input leads of the ideal op-amp, the input resistance to either lead
is infinite. For a physical op-amp, the input resistance is not infinite. To a first approximation, the signal
currents which flow in the input leads can be modeled by placing a resistor RI between the two leads. Fig.
2.8 shows the op-amp symbol with such a resistor added as an external element. The resistor is called the
differential input resistance. A typical value for RI is 1 MΩ or greater. In the following, we calculate the
effects of RI on the non-inverting and the inverting amplifiers.

Figure 2.8: Op amp with its internal input resistance modeled by an external resistor.

2.2.2 Non-Inverting Amplifier

Figure 2.9(a) shows the circuit diagram of a non-inverting amplifier with the differential input resistance
modeled by an external resistor. Fig. 2.9(b) shows an equivalent circuit which can be used to solve for V−.
By inspection, we can write

Vo = A (s) (Vi − V−) (2.24)

V− = Vo
R1

R1 +RF
× RI
RI +R1‖RF

+ Vi
R1‖RF

RI +R1‖RF
(2.25)

where A (s) is the op-amp open-loop voltage-gain transfer function. Simultaneous solution of these equations
for Vo/Vi yields

Vo
Vi

=
A′ (s)

1 +A′ (s)R1/ (R1 +RF )
=

1 +RF/R1
1 + (1 +RF /R1) /A′ (s)

(2.26)

where A′ (s) is given by

A′ (s) =
RI

RI +R1‖RF
A (s) (2.27)

Equation (2.6) gives the voltage-gain transfer function for RI =∞. When this equation is compared to
Eq. (2.26), it can be concluded that the effect of RI on the voltage gain is to reduce the open-loop transfer
function A (s) by the factor RI/ (RI +R1‖RF ). The effective transfer function is denoted by A′ (s). When
Eq. (2.2) is used for A (s), A′ (s) can be written

A′ (s) =
A′0

1 + s/ω0
(2.28)

where A′0 is given by

A′0 =
RI

RI +R1‖RF
A0 (2.29)

We see that the effect of RI is to reduce the dc gain constant of A (s) by the factor RI/ (RI +R1‖RF ).
Because the pole frequency is unchanged, it follows that the gain bandwidth product is reduced by the
factor RI/ (RI +R1‖RF ).
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Figure 2.9: (a) Non-inverting amplifier. (b) Equivalent circuit for calculating Zin and Vo/Vi.

It follows from Fig. 2.9(b) that the input impedance of the non-inverting amplifier is given by

Zin =
Vi
I1

=
Vi(

Vi−VoR1/(R1+RF )
RI+R1‖RF

) =
RI +R1‖RF

1− (Vo/Vi)R1/ (R1 +RF )
(2.30)

When Eq. (2.26) is used for Vo/Vi, this expression reduces to

Zin =

(
1 +

R1A (s)

R1 +RF

)
RI +R1‖RF (2.31)

Fig. 2.10(a) shows the equivalent circuit for Zin, where Eq. (2.2) is assumed for A (s). The resistor R and
the capacitor C in the figure are given by

R =
R1

R1 +RF
A0RI (2.32)

C =
1

ω0R
=

1 +RF/R1
A0ω0RI

(2.33)

Figure 2.10: (a) Equivalent circuit for Zin. (b) Bode plot for |Zin|.

At low frequencies where the capacitor is an open circuit, Zin is resistive and equal to RI +R+R1‖RF .
At high frequencies where the capacitor is a short circuit, Zin is resistive and equal to RI + R1‖RF . It
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follows that the input impedance function is a low-pass shelving function. The transfer function for Zin can
be written

Zin = (RI +R+R1‖RF )
1 + s/ωz
1 + s/ω0

(2.34)

where ωz is given by

ωz =

(
1 +

R

RI +R1‖RF

)
ω0 (2.35)

The Bode magnitude plot for Zin is shown in Fig. 2.10(b). Because |Zin| ≥ RI and RI is usually very large,
it follows that Zin can be approximated by an open circuit in most applications.

2.2.3 Inverting Amplifier

Figure 2.11(a) shows the circuit diagram of an inverting amplifier with the differential input resistance of
the op-amp modeled as an external resistor. Fig. 2.11(b) shows an equivalent circuit which can be used to
solve for V−. By inspection, we can write

Vo = −A (s)V− (2.36)

V− =

(
Vi
R1

+
Vo
RF

)
(RI‖R1‖RF ) =

RI
RI +R1‖RF

(
Vi
R1

+
Vo
RF

)
(R1‖RF ) (2.37)

where A (s) is the op-amp open-loop voltage-gain transfer function. These equations can be solved for the
voltage gain of the circuit to obtain

Vo
Vi

= − (1/R1)A′ (s) (R1‖RF )
1 + (1/RF )A′ (s) (R1‖RF )

= − RF/R1
1 + (1 +RF/R1) /A′ (s)

(2.38)

where A′ (s) is the effective open-loop gain given by Eq. (2.27).

Figure 2.11: (a) Inverting amplifier. (b) Equivalent circuit for calculating Vo/Vi.

Equation (2.12) gives the voltage-gain transfer function for RI = ∞. When this equation is compared
to Eq. (2.38), it can be seen that the effect of RI on the voltage gain is to reduce the open-loop transfer
function A (s) by the factor RI/ (RI +R1‖RF ). This is the same as the effect of RI on the non-inverting
amplifier.
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It follows from Fig. 2.11(a) that the input impedance of the inverting amplifier is given by

Zin =
Vi
I1

=
Vi

(Vi − V−) /R1
=

R1
1− (V−/Vo) (Vo/Vi)

(2.39)

To put this in the desired form, we let V−/Vo = −1/A (s) and use Eq. (2.38) for Vo/Vi. The equation for
Zin reduces to

Zin = R1 +RI‖
(

RF
1 +A (s)

)

= R1 +RI‖
[

1

RF
+

(
RF
A0

+
RF
A0ω0

s

)−1]−1
(2.40)

The analogous circuit for Zin is shown in Fig. 2.12(a), where R2 and L are given by Eqs. (2.18) and (2.19).

Figure 2.12: (a) Equivalent circuit for Zin. (b) Bode plot for |Zin|.

The impedance transfer function for Zin is of the form of a high-pass shelving transfer function given by

Zin (s) = RDC
1 + s/ωz
1 + s/ωp

(2.41)

where RDC is the dc resistance, ωp is the pole frequency, and ωz is the zero frequency. These are given by

RDC = R1 +RI‖
(

RF
1 +A0

)
(2.42)

ωp =
R2 +RI‖RF‖R1

L
= ω0

(
1 +

A0R1‖RI
R1‖RI +RF

)
(2.43)

ωz =
R2 +RI‖RF

L
= ω0

(
1 +

A0RI
RI +RF

)
(2.44)

The Bode magnitude plot for Zin is shown in Fig. 2.12(b).

2.3 Effects of Non-Zero Output Resistance

2.3.1 Open-Loop Output Resistance

The output impedance of the ideal op-amp is zero. For a physical op-amp, the output impedance is not zero.
To model it, we place a resistor RO in series with the op-amp output. Fig. 2.13 shows the op-amp symbol
with such a resistor added as an external element. The resistor is called the open-loop output resistance. A
typical value for RO is 100Ω. We use the model in Fig. 2.13 to calculate the effects of RO on the inverting
and the non-inverting amplifiers in the following. In the analyses, we assume that the differential input
resistance can be neglected, i.e. replaced by an open circuit.
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Figure 2.13: Op-amp symbol with the output resistance modeled by an external resistor.

2.3.2 Non-Inverting Amplifier

Figure 2.14 shows the circuit diagram of a non-inverting amplifier with the op-amp output resistance modeled
as an external resistor. To solve for the voltage gain of the circuit, we can write by inspection

Vo = A (s) (Vi − V−)
RF +R1

RO +RF +R1
(2.45)

V− = Vo
R1

RF +R1
(2.46)

where a voltage divider relation is used in the former equation. These equations can be solved for the voltage
gain to obtain

Vo
Vi

=
A′ (s)

1 +A′ (s)R1/ (R1 +RF )
=

1 +RF/R1
1 + (1 +RF /R1) /A′ (s)

(2.47)

where A′ (s) is given by

A′ (s) = A (s)
RF +R1

RO +RF +R1
(2.48)

(The A′ (s) here is not the same as that defined in Sec. 2.2.)

Figure 2.14: Non-inverting amplifier.

It can be concluded that the effect of RO is to reduce the effective open-loop voltage-gain transfer function
by the factor (RF +R1) / (RO +RF +R1). When A (s) is modeled by the transfer function in Eq. (2.2), it
follows that the dc gain constant A0 is reduced by the same factor, the pole frequency is not changed, and
the gain-bandwidth product is reduced by the factor (RF +R1) / (RO +RF +R1).

The output impedance of the non-inverting amplifier is given by the ratio of the open-circuit output
voltage Vo(oc) to the short-circuit output current Io(sc), or equivalently the ratio of Vo(oc)/Vi to Io(sc)/Vi. Eq.
(2.47) gives Vo(oc)/Vi. To solve for the short-circuit output current, we connect the Vo node in Fig. 2.14 to
ground. The current which flows in the ground connection is the short-circuit output current. When the Vo
node is grounded, there is no feedback voltage, i.e. V− = 0. It follows that the current which flows in the
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ground connection is Io(sc) = A (s)Vi/RO so that Io(sc)/Vi = A (s) /RO. Thus the output impedance of the
amplifier is obtained by dividing Eq. (2.47) by A (s) /RO. It is given by

Zout =
Vo(oc)
Io(sc)

=
RO‖ (R1 +RF )

1 +A′ (s)R1/ (R1 +RF )
(2.49)

When the transfer function in Eq. (2.2) is used for A (s), the expression for Zout reduces to

Zout = RDC
1 + s/ω0
1 + s/ωp

(2.50)

where RDC and ωp are given by

RDC =
RO‖ (R1 +RF )

1 +A0R1/ (RO +RF +R1)
(2.51)

ωp =

(
1 +A0

R1
RO +RF +R1

)
ω0 (2.52)

The equivalent circuit for Zout is given in Fig. 2.15(a), where R2 and L are given by

R2 = [RO‖ (RF +R1)]
A0R1/ (RO +RF +R1)

1 +A0R1/ (RO +RF +R1)
(2.53)

L =
R2
ωp

(2.54)

Figure 2.15: (a) Equivalent circuit for Zout. (b) Bode plot for |Zout|.

Example 7 At very low frequencies, an op-amp has the frequency independent open-loop gain A (s) = A0 =
2 × 105 and an open-loop output resistance RO = 100Ω. The op-amp is to be used in a non-inverting
amplifier having a voltage gain of 100. If the amplifier is designed with the assumption that the op-amp is
ideal, calculate the actual gain of the circuit and its output resistance.

Solution. To obtain a voltage gain of 100 with an ideal op-amp, we require 1+RF/R1 = 100. To satisfy
this, we can choose R1 = 100Ω and RF = 9.9 kΩ. The voltage gain is calculated from Eqs. (2.48) and (2.47)
as follows:

A′ = 2× 105
9.9k+ 100

100 + 9.9k+ 100
= 1.98× 105

Vo
Vi

=
1.98× 105

1 + 1.98× 105 × 100/ (100 + 9.9k)
= 99.95

The output resistance is calculate from Eq. (2.51) to obtain

RDC =
100‖ (100 + 9.9k)

1 + 1.98× 105 × 100/ (100 + 9.9k)
= 0.05Ω
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2.3.3 Inverting Amplifier

Figure 2.16(a) shows the circuit diagram of an inverting amplifier with RO shown as an external resistor.
Fig. 2.16(b) shows an equivalent circuit which can be used to calculate V− and Vo. By inspection, we can
write

V− =

(
Vi
R1

+
Vo
RF

)
(R1‖RF ) (2.55)

Vo = −A (s)V−
RF

RO +RF
+ V−

RO
RO +RF

(2.56)

where two voltage divider relations are used in the latter equation. These equations can be solved for the
voltage gain to obtain

Vo
Vi

= − (1/R1)A
′′ (s) (R1‖RF )

1 + (1/RF )A′′ (s) (R1‖RF )
= − RF /R1

1 + (1 +RF/R1) /A′′ (s)
(2.57)

where A′′ (s) is given by

A′′ (s) = A (s)
RF

RO +RF
− RO
RO +RF

(2.58)

Figure 2.16: (a) Inverting amplifier. (b) Equivalent circuit for calculating Vo/Vi.

Equation (2.12) gives the voltage-gain transfer function for the inverting amplifier for the case RO = 0.
When this equation is compared to Eq. (2.57), it can be seen that the effect of RO is to cause the open loop
transfer function A (s) to be changed to A′′ (s) given by Eq. (2.58). When Eq. (2.2) is used for A (s), A′′ (s)
can be written

A′′ (s) = A′′0
1− s/ωz
1 + s/ω0

(2.59)

where A0 and ωz are given by

A′′0 =
RF

RO +RF

(
A0 −

RO
RF

)
(2.60)

ωz =

(
A0
RF
RO

− 1

)
ω0 (2.61)
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Thus the effect of RO is to reduce the gain constant from A0 to A
′′
0 and to introduce a right-half-plane zero

into the transfer function.
When Eq. (2.59) is used in Eq. (2.57), it follows that the voltage-gain transfer function for the inverting

amplifier reduces to
Vo
Vi

= A0f
1− s/ωz
1 + s/ω0f

(2.62)

where A0f and ω0f are given by

A0f =
A′′0RF/ (R1 +RF )

1 +A′′0R1/ (R1 +RF )
=

RF/R1
1 + (1 +RF/R1) /A′′0

(2.63)

ω0f =
1 +A′′0R1/ (R1 +RF )

1− (ω0/ω1)R1/ (R1 +RF )
ω0 (2.64)

The output impedance of the inverting amplifier is the same as that for the non-inverting amplifier given
by Eq. (2.50). This follows because the circuit seen looking into the output terminal with the source zeroed
is the same for both configurations.

2.4 Output Waveform Distortion

2.4.1 Types of Distortion

The output voltage waveform from a physical op-amp is said to be distorted when it does not correspond
to what would be expected if the op-amp were ideal. Distortion can be divided into two categories, linear
distortion and non-linear distortion. The simplest way to differentiate between the two is to compare their
effects when the op-amp input signal is a sine wave. If the output signal is a pure sine wave having the same
frequency as the input sine wave, the distortion is said to be linear. For example, the gain of all physical
op-amps decreases as frequency is increased. This is a linear distortion mechanism. Another example of
linear distortion is a phase shift in the output sine wave. In contrast, if the output signal contains sine-wave
components at frequencies different from the frequency of the input sine wave, the distortion is said to be
non-linear. The three principle mechanisms of non-linear distortion in op-amps are peak clipping, current
limiting, and slew rate limiting. These are discussed in this section.

2.4.2 Peak Clipping

Physical op-amps have two external leads to which dc power supply voltages must be applied in order for the
op-amps to operate. Fig. 2.17(a) shows the op-amp symbol with the power supply leads shown explicitly.
The diagram shows the dc voltages V + and V − applied to the leads. In the majority of applications, the
power supply voltages are bipolar, i.e. V + = −V −. In the following, it is assumed that this condition on
the two power supply voltages holds unless stated otherwise.

In general, the output voltage vO from an op-amp must satisfy the inequality V − < vO < V +. This
relation says that vO can never be equal to either power supply voltage. We denote the maximum positive
peak value of vO by V +SAT and the maximum negative peak value by V −SAT . These two voltages are called
the op-amp saturation voltages. Typically, V +SAT is two to three volts less than V

+ and V −SAT is two to three
volts greater than V −. For example, if V + = −V − = 15 V, typical values for the saturation voltages might
be V +SAT = −V −SAT = 12 V. This example illustrates the case where the saturation voltages are symmetrical.
It is common to assume symmetrical saturation voltages when the op-amp is powered by bipolar power
supply voltages. In this case, we denote the saturation voltage by VSAT .

Figure 2.17(b) shows a plot of the op-amp output voltage vO versus the differential input voltage v+−v−,
where symmetrical saturation voltages are assumed. For −VSAT < vO < +VSAT , the output voltage is given
by vO = A (v+ − v−), where A is the open-loop gain. The slope of the curve in this region is equal to A. For
|v+ − v−| ≥ VSAT/A, the slope of the curve is zero. In the two regions where the slope is zero, the output
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Figure 2.17: (a) Op amp with power supply connections shown. (b) vO versus v+−v−. (c) Output waveforms.

voltage does not change when the input voltage is changed. Fig. 2.17(c) shows the effect of clipping on a
sine wave output signal. For the larger amplitude waveform, it can be seen that the maximum value of |vO|
is limited to VSAT . The output is said to be peak clipped at this value. The smaller amplitude waveform is
not clipped.

Peak clipping is a non-linear distortion mechanism. For a sine-wave input signal, a Fourier series analysis
can be used to show that a peak clipped output signal contains frequency components that are not at the
frequency of the input signal. If the clipping voltages are symmetrical, it can be shown that the distortion
components in the output signal are at odd harmonics of the input signal. For example, a 1 kHz input
signal would generate a 1 kHz output signal plus distortion components at 3 kHz, 5 kHz, 7 kHz, etc. When
the clipping voltages are not symmetrical, it can be shown that both even and odd order harmonics are
generated by the clipping. We have illustrated peak clipping here for an op-amp with no feedback. If
feedback is added, the peak clipping voltages are not changed. Thus the graph of the output voltage versus
input voltage is the same as that shown in Fig. 2.17(b) except that the slope of the curve in the center
region is reduced by the feedback. To prevent peak clipping from occurring, either the peak value of the
input signal or the gain of the op-amp must be reduced.

2.4.3 Current Limiting

All physical op-amps have internal current limiting circuits which limit the maximum output current to
prevent failure of the internal transistors that supply the current. Fig. 2.18(a) shows an op-amp with a load
resistor connected to its output. The output current is given by iO = vO/RL. For a given output voltage,
the output current varies inversely with the load resistance. If the resistance is decreased, the output current
will increase until the internal protection circuits are activated to limit the current. When this occurs, the
op-amp exhibits peak clipping at its output. Current limiting causes the op-amp to clip at an output voltage
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that is less than its saturation voltage.

Figure 2.18: (a) Op amp with a load resistor. (b) Plots of vO versus v+ − v− showing effects of current
limiting.

Let the maximum value of the op-amp output current be denoted by IM . For a given load resistance RL,
the magnitude of the peak output voltage is limited to IMRL. If RL > VSAT /IM , the op-amp clips before
current limiting occurs. If RL < VSAT /IM , the op-amp exhibits current limiting before clipping occurs.
Fig. 2.18(b) shows the graph of the op-amp output voltage versus differential input voltage for three cases.
One case corresponds to no load resistor so that the graph is identical to that shown in Fig. 2.17(b). The
other cases illustrate the effects of current limiting for two values of load resistance. The graph assumes that
RL1 > RL2.

Example 8 An op-amp has the saturation voltages V +SAT = V + − 2.5 V and V −SAT = V − + 2.5 V. The
current limited output current is IM = 25 mA. The op-amp is powered by bipolar supply voltages of +15 V
and −15 V. Determine the lowest load resistance that can be driven without current limiting. Determine the
peak output voltage for a load resistance of 100Ω.

Solution. The magnitude of the peak output voltage is 15− 2.5 = 12.5 V. For a current limit of 25 mA,
the minimum load resistance that can be driven to a peak voltage of 12.5 V is RL(min) = 12.5/0.025 = 500Ω.
For RL = 100Ω, the magnitude of the peak output voltage is 100× 0.025 = 2.5 V.

Example 9 Figure 2.19(a) shows a non-inverting amplifier with a capacitive load. The input signal to the
amplifier is a square wave. The magnitude of the output current is limited to the value IM . Determine the
waveform of the amplifier output voltage.

Solution. A voltage step applied to a capacitor causes an impulse of current to flow. Because the op-amp
is current limited, it cannot supply an impulse of current to the load capacitor. Each time the input square
wave switches states, the op-amp is driven into current limiting. For an output current iO = ±IMAX , the
capacitor voltage has a time derivative given by dvO/dt = ±IM/CL, where we assume that the current in
RF can be neglected. Thus current limiting has the effect of limiting the maximum time derivative of vO
with the capacitive load. Fig. 2.19(b) shows plot of the output voltage waveform, where it is assumed that
the frequency of the square wave is low enough so that the output voltage reaches its final peak value each
half cycle of the signal. The dotted lines in the figure represent the waveform for the case of no current
limiting.

2.4.4 Slew Rate Limiting

An op-amp amplifier is said to be unstable if it puts out an ac signal with no input signal. To prevent
instability problems, the internal circuits of most op-amps contain a capacitor that is called the compensation
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Figure 2.19: (a) Non-inverting amplifier with capacitive load. (b) Square wave response showing the effects
of current limiting.

capacitor. The op-amp output voltage is proportional to the voltage across this capacitor. The circuits which
charge and discharge the capacitor are current limited. As is illustrated by Example 9, the time derivative
of the voltage across a capacitor is limited by the current available to charge it. Thus the compensation
capacitor and the current available to charge it set the maximum time derivative of the op-amp output
voltage. This maximum time derivative is called the op-amp slew rate.

The basic units of slew rate are volts per second (V/s). In op-amp specifications, it is usually specified
in volts per microsecond (V/µs). The slew rate is related to the compensation capacitor and the maximum
current available to charge it by the equation

SR =
I1
Cc

(2.65)

where Cc is the capacitor and I1 is the peak value of the charging current. A typical general purpose op-amp
might have a compensation capacitor with a value of 30 pF and a slew rate of 1 V/µs. Eq. (2.65) can be used
to calculate I1 = 106× 30p = 30 µA. This calculation illustrates how small the internal currents in op-amps
can be. Most op-amps have symmetrical slew rates. That is the slew rate is the same for an increasing or
a decreasing output voltage. The slew rates are not symmetrical if the peak positive current available to
charge the compensation capacitor is not the same as the peak negative current.

If an op-amp does not exhibit slewing, the time derivative of the output voltage is proportional to the
time derivative of the input voltage. This is not true when the op-amp slews. Fig. 2.20(a) illustrates the
effect of slewing on the sine-wave response of an op-amp. The figure shows the waveforms of the output
voltage when the op-amp is slewing and when it is not slewing. The waveform with slewing is a triangle
wave having a peak voltage obtained by multiplying the slew rate by one-fourth the period. It is given by

VP = SR× T
4
=

I1
4fCc

(2.66)

where the period T is related to the frequency f by T = 1/f . It can be seen from this expression that the
peak output voltage is not a function of the amplitude the input voltage. Thus the output voltage does not
increase if the input voltage is increased. This means that slewing is a non-linear phenomenon.

The non-linear distortion generated when an op-amp slews is referred to as slewing induced distortion.
With a sine wave input signal, a Fourier series analysis can be used to show that the distortion components
in the output signal are at odd harmonics of the signal frequency. This assumes symmetrical slew rates. If
the op-amp slew rates are not symmetrical, both even and odd harmonics are generated.

If an op-amp does not slew, the maximum peak output voltage is VSAT . For a sine-wave input signal,
the corresponding output voltage is given by

vO (t) = VSAT sin (2πft) (2.67)
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Figure 2.20: (a) Sine-wave output without slewing and with full slewing. (b) Peak sine-wave output voltage
versus frequency.

The time derivative of this expression is

d

dt
vO (t) = 2πfVSAT cos (2πft) (2.68)

The maximum value of the magnitude of the derivative is 2πfVSAT . This must be less than the slew rate of
the op-amp if it is not to exhibit slewing. The frequency above which slewing occurs is given by

f1 =
SR

2πVSAT
(2.69)

For f < f1, the peak output voltage is limited by clipping. For f ≥ f1, the peak output voltage is limited
by slewing. The maximum undistorted peak sine-wave output voltage is given by

VP = VSAT for f ≤ f1
=

SR

2πf
for f > f1 (2.70)

Figure 2.20(b) shows a plot of VP as a function of frequency. Because the voltage decreases with increasing
frequency for f ≥ f1, f1 is called the large-signal bandwidth of the op-amp.

Example 10 The op-amp of Example 8 has a slew rate of 1 V/µs. Calculate the large-signal bandwidth of
the op-amp. Calculate the peak value of the largest amplitude sine-wave that the op-amp can put out at a
frequency of 20 kHz.

Solution. By Eq. (2.69), the large signal bandwidth is f1 = 106/ (2π × 12.5) = 12.7 kHz. By Eq. (2.70),
the peak value of the largest amplitude output sine wave is VP = 106/ (2π × 20k) = 7.96 V.
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2.5 DC Offsets

2.5.1 Offset Voltage

Although integrated-circuit op-amps are fabricated with precision, it is impossible to achieve circuits which
have a zero dc output voltage when both input voltages are zero. The output offset voltage of a physical
op-amp is the dc voltage that is present at its output when both of its inputs are grounded. The expression
for the op-amp output voltage when an offset voltage is present is written

vO = A (v+ − v− + VOS) (2.71)

With v+ = v− = 0, the dc offset voltage at the output is AVOS . The voltage VOS is defined as the input
offset voltage. It is equivalent to the dc voltage at the input of an ideal op-amp that produces the same dc
offset voltage at its output. A typical value for VOS is 5 mV or less.

It can be seen from Eq. (2.71) that vO = 0 if v− − v+ = VOS. Thus an alternate definition of the input
offset voltage is the differential dc voltage which must be applied across the op-amp inputs in order to achieve
a zero dc output voltage, where the positive reference node is the v− input. In op-amp specifications, VOS is
commonly specified without regard to its algebraic sign. The specified value represents the maximum value
of the magnitude of the offset voltage for that particular op-amp.

Example 11 Figure 2.21 shows the circuit diagram of a voltage follower with its input grounded. If the
op-amp has the input offset voltage VOS, solve for the output voltage.

Figure 2.21: Circuit for measuring VOS.

Solution. The output voltage is obtained by setting v+ = 0 and v− = vO in Eq. (2.71) to obtain

vO =
A

1 +A
VOS

For A >> 1, it follows that vO ∼= VOS. This result suggests a very convenient method for measuring VOS for
an op-amp.

2.5.2 Input Currents

The input stage of a physical op-amp is commonly a transistor differential amplifier. The dc bias currents
which flow in the differential amplifier cause dc currents to flow in the two op-amp input leads. In many
applications, these currents are small enough that they can be neglected. However, they may cause dc offset
voltages at the op-amp output that are unacceptable. Fig. 2.22(a) shows the op-amp symbol with the
dc input currents I+ and I− labeled. The reference directions show the currents flowing into the op-amp.
Depending on the particular op-amp, the actual direction of the dc input currents can be either into or out
of the op-amp.

The dc input currents are commonly specified by giving the common-mode and differential components.
The common-mode component is called the input bias current and is denoted by IB . The differential
component is called the input offset current and is denoted by IOS. These are related to I+ and I− by

IB =
I+ + I−

2
(2.72)
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IOS = I+ − I− (2.73)

If I+ = I−, we note that IB = I+ = I− and IOS = 0. Typical values are 100 nA or less for IB and 20 nA
or less for IOS. In op-amp specifications, IB and IOS are commonly specified without regard to algebraic
sign. The specified values represents the maximum value of the magnitude of the currents for that particular
op-amp. Fig. 2.22(b) shows an equivalent circuit of the op-amp with the input currents represented by
external common-mode and differential current sources.

Figure 2.22: (a) Op amp with input currents labeled. (b) Equivalent circuit for input currents.

Example 12 Figure 2.23(a) shows an inverting op-amp amplifier with a resistor connected in series with
its non-inverting input. The op-amp has the input bias current IB . Solve for the output voltage vO. Assume
that A→∞, IOS = 0, and VOS = 0.

Solution. Because IOS = 0, the dc input currents are I+ = I− = IB . Fig. 2.23(b) shows the equivalent
circuit which can be used to calculate V+ and V−. These are given by

V+ = −IBR2

V− =

(
VI
R1

+
VO
RF

− IB
)
(R1‖RF )

Because A→∞, the output voltage can be solved for by setting V+ = V− to obtain

VO = −RF
R1

[
VI +

(
1 +

R1
RF

)
(R2 −R1‖RF ) IB

]

It can be seen from this equation that the dc offset at the output caused by IB is zero if R2 = R1‖RF .
This is equivalent to the condition that the resistance seen looking out of the V+ and V− inputs be equal
with VI and VO zeroed.

Example 13 Figure 2.24 shows the circuit diagram of a non-inverting amplifier with a resistor connected in
series with its input. The op-amp has the input bias current IIB. Solve for the output voltage VO . Assume
that A→∞, IOS = 0, and VOS = 0.

Solution. Figure 2.24(b) shows an equivalent circuit for calculating V+ and V−. By inspection, these are
given by

V+ = VI − IBR2

V− = VO
R1

R1 +RF
− IB (R1‖RF )
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Figure 2.23: (a) Inverting amplifier. (b) Equivalent circuit for calculating v+ and v−.

Figure 2.24: (a) Non-inverting amplifier. (b) Equivalent circuit for calculating v+ and v−.



2.6. MISCELLANEOUS SPECIFICATIONS xxiii

The output voltage can be solved for by setting v+ = v− to obtain

VO =

(
1 +

RF
R1

)
[VI + (R1‖RF −R2) IB ]

It can be seen from this equation that the dc offset at the output caused by IB is zero if R2 = R1‖RF . This
is the same condition as for the inverting amplifier of Example 12.

2.5.3 Condition for Zero Offset Due to IB

Examples 12 and 13 show that the condition for zero offset voltage at the op-amp output due to IB are
the same for the inverting amplifier and the non-inverting amplifier. The condition is that the resistance
seen looking out of the v+ and v− inputs be equal, where the two resistances are calculated with vI and vO
zeroed. Without resistor R2 in the circuits, the condition cannot be met. In circuits containing capacitors,
each capacitor must be replaced with an open-circuit when calculating the resistance seen looking out of the
v+ and v− inputs.

2.6 Miscellaneous Specifications

This section covers several specifications on physical op-amps that have not been covered in the preceding
sections.

2.6.1 Common-Mode Rejection Ratio

The output voltage from an ideal op-amp is a function only of the difference or differential voltage across its
two inputs. In contrast, physical op-amps have an output voltage that can be written

Vo = A (s) (V+ − V−) +
A (s)

ρ
× V+ + V−

2
(2.74)

where A (s) is the differential voltage gain and A (s) /ρ is the common-mode voltage gain. The constant ρ is
the op-amp common-mode rejection ratio. It represents the ratio of the differential gain to the common-mode
gain. It is commonly expressed in dB by the equation 20 log ρ. A typical value for ρ is 105 (100 dB). In most
applications, the common-mode rejection ratio is large enough so that the common-mode term in Eq. (2.74)
can be neglected.

2.6.2 Input Common-Mode Range

In some applications of op-amps, the external circuits cause a common-mode voltage, e.g. a dc voltage, to be
present at both inputs. If this common-mode voltage is out of range, the differential amplifier input stage to
the op-amp can cease to operate. The input common-mode range is the range on the common-mode input
voltage over which the differential amplifier remains linear. For example, with the bipolar power supply
voltages V + = −V − = 15 V, the input common-mode range might be from −10 V to +10 V. A dc common-
mode voltage applied to the two op-amp input terminals that is outside this range can cause the op-amp to
cease to operate.

2.6.3 Input Differential Range

The input differential range is the maximum difference voltage that can be safely applied between the two
op-amp inputs. When an op-amp is operated with negative feedback, the difference voltage between the
inputs is very small. (It is zero for the ideal op-amp.) However, if the op-amp clips, current limits, or slews,
it loses feedback and the differential input voltage can become large. Another example of a case where the
differential input voltage might be large is when the op-amp is used as a comparator.
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2.6.4 Power Supply Rejection Ratio

When either power supply voltage changes, the output offset voltage of a physical op-amp can change. This
change in output offset voltage can be converted to a change in the input offset voltage by dividing by the
open-loop gain of the op-amp. The power supply rejection ratio (PSRR) is defined as the ratio of the change
in input offset voltage to the change in the power supply voltage, where one power supply voltage is varied
and the other is held constant. In general, a different value is obtained when each power supply voltage is
changed. A typical maximum value is 20 µV/V.

2.7 Linear Op-Amp Macromodels

2.7.1 Macromodels

A macromodel is a circuit model which is simpler than the original circuit but retains an accurate represen-
tation of the performance of that circuit. In this section, we develop a linear macromodel of the op-amp.
The macromodel can be used with computer simulation programs such as SPICE to predict the voltage
gain, input impedance, and output impedance of op-amp circuits. More accurate macromodels which model
non-linear effects such as clipping, current limiting, and slewing require the addition of diodes and transistors
to the model.

2.7.2 Modeling Input and Output Resistance

Figure 2.1(b) gives the simplest controlled-source model of the op-amp. The input resistance between the
v+ and the v− terminals is infinite. The output resistance seen looking into the vO node is zero. We can
model the differential input resistance by adding a resistor RI between the v+ and the v− nodes. In addition,
we can model the open-loop output resistance by adding a resistor RO in series with the output lead. The
modified circuit is shown in Fig. 2.25. The next step in developing the macromodel circuit is to model the
finite bandwidth of the op-amp.

Figure 2.25: Simple macromodel with input and output resistances added.

2.7.3 Modeling the Open-Loop Transfer Function

The input stage of a typical op-amp operates as a voltage controlled current source with a load impedance
that consists of a parallel RC circuit. The current source is controlled by the differential voltage between
the op-amp input terminals. Such a circuit is shown in Fig. 2.26(a). The transconductance of the controlled
source in this figure is denoted by gm1. The voltage V1 is given by

V1 = −gm1 (V+ − V−)
(
R1‖

1

C1s

)
= − gm1R1

1 +R1C1s
(V+ − V−) (2.75)

The second stage of the typical op-amp operates as a voltage-controlled voltage source having the input
voltage V1 and an open-circuit output voltage equal to the op-amp open-circuit output voltage. Such a
circuit is shown in Fig. 2.26(b). The voltage gain of the controlled source is denoted by −AV , where AV is
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a positive constant. The output resistance of the source is RO. The open-circuit output voltage is given by
Vo(oc) = −AV V1.

The op-amp macromodel consists of the two circuits of Fig. 2.26 in combination. Let the open-circuit
voltage gain of this circuit be denoted by A (s). It is given by

A (s) =
Vo(oc)
V+ − V−

=
gm1R1AV
1 +R1C1s

(2.76)

This is a single-pole low-pass transfer function having a dc gain constant A0 and a radian pole frequency ω0
given by

A0 = gm1R1AV (2.77)

ω0 =
1

R1C1
(2.78)

Figure 2.26: (a) Input stage model. (b) Gain stage model.

Figure 2.27 shows a modification to the circuit of Fig. 2.26 which makes the circuit more closely agree
with the internal architecture of physical op-amps. The capacitor C1 from the V1 node to ground in the
original circuit is replaced by the capacitor Cc from the V1 node to the top of the voltage-controlled voltage
source. By the Miller theorem, the load capacitance on the voltage-controlled current source input stage is
the same if C1 and Cc satisfy the relation

C1 = (1 +AV )Cc (2.79)

Figure 2.27: Modified macromodel circuit.

2.7.4 Completed Model

The circuit of Fig. 2.27 is a better model of physical op-amps if the output resistor RO is broken into two
parts RO1 and RO2 as shown in Fig. 2.28, where RO = RO1+RO2. This circuit more accurately models the
output impedance of a physical op-amp. In addition, it better models the variation in the op-amp gain with
load impedance. This is the completed linear macromodel of the op-amp. A modification to this circuit that
is often used in computer simulations is to make a Norton equivalent circuit of the resistor RO2 in series
with the voltage source AV V1. The circuit is shown in Fig. 2.29, where gm2 = AV /RO2.



xxvi CHAPTER 2 CHARACTERISTICS OF PHYSICAL OP-AMPS

Figure 2.28: Further modification to the macromodel.

Figure 2.29: Final macromodel circuit.

Example 14 Solve for the open-circuit voltage-gain transfer function of the op-amp macromodel in Fig.
2.29. Compare it to the transfer function of Eq. (2.76).

Solution. It follows from Fig. 2.29 that

V1 = [−gm1 (V+ − V−) + V2Ccs]
(
R1‖

1

Ccs

)

Vo(oc) = V2 = [−gm2V1 + V1Ccs]
(
RO2‖

1

Ccs

)

These equations can be solved for the voltage gain of the circuit to obtain

Vo(oc)
V+ − V−

= gm1R1gm2RO2
1− (Cc/gm2) s

1 + [R1 (1 + gm2RO2) +RO2]Ccs

The above equation is of the form of a dc gain constant multiplied by a low-pass shelving transfer function,
where the zero in the transfer function is in the right-half complex plane. In contrast, the transfer function
of Eq. (2.76) is of the form of a dc gain constant multiplied by a low-pass transfer function.

Example 15 Solve for the output impedance transfer function for the op-amp macromodel in Fig. 2.29.
Form the equivalent circuit which has this impedance transfer function.

Solution. To solve for the output impedance, we zero the differential input voltage and drive the output
node with a test current source It. The circuit is shown in Fig. 2.30. For this circuit, we can write

Vo = ItRO1 + V2

V2 = (It − gm2V1)×RO2‖
(
RO1 +

1

Ccs

)

V1 = V2
RO1

RO1 + 1/Ccs
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Figure 2.30: Circuit for solving for Zout.

These equations can be solved for the output impedance to obtain

Zout =
Vo
It

= RO1 +RO2
1 +R1Ccs

1 + [R1 (1 + gm2RO2) +RO2]Ccs

The above equation is of the form of a resistance (RO1) plus a resistance (RO2) multiplied by a low-pass
shelving transfer function. At low frequencies, the impedance has the value Zout = RO1 + RO2. At high
frequencies, it has the value Zout = RO1 +RO2R1/ [R1 (1 + gm2RO2) +RO2]. The equivalent circuit which
has this same impedance is given in Fig. 2.31. The elements R and C in this circuit are given by

R =
R1

1 + gm2R1

C = Cc (1 + gm2R1)

Figure 2.31: Equivalent circuit for Zout.

Example 16 The macromodel circuit of Fig. 2.29 can be used to model the 741 op-amp with the following
element values: RI = 2 MΩ, gm1 = 1.38× 10−4 S, R1 = 100 kΩ, Cc = 20 pF, gm2 = 106S, RO1 = 150Ω,
and RO2 = 150Ω. Calculate the dc gain A0, the pole frequency f0, the gain-bandwidth product fx, and the
zero frequency fz in the voltage-gain transfer function for the 741 macromodel. Calculate the element values
for R and C in the equivalent circuit for the output impedance in Fig. 2.31.

Solution. It follows from Example 14 that the dc gain A0, the pole frequency f0, the gain bandwidth
product fx, and the zero frequency fz for the 741 macromodel are given by

A0 = gm1R1gm2RO2 = 2.2× 105

f0 =
1

2π [R1 (1 + gm2RO2) +RO2]
Cc = 5Hz

fx = A0f0 = 1.1MHz
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fz =
gm2
2πCc

= 8.4× 105MHz

Because the zero frequency fz is so much higher than the gain-bandwidth product fx, the zero term in
the transfer function can be neglected for all practical purposes. The values for the elements R and C in the
output impedance equivalent circuit are R = 9.43 mΩ and C = 212 µF.

2.7.5 Example SPICE Macromodel Subcircuits

The 741 and the LF351 are two general purpose integrated-circuit op-amps that are commonly used in analog
design. The 741 is a bipolar op-amp, i.e. it is fabricated entirely with bipolar-junction transistors (BJTs).
The LF351 is a bi-fet op-amp. It is fabricated with junction field-effect transistors (JFETs) in the input
diff-amp stage and BJT’s in the following stages. The macromodels for these op-amps can be simulated
in SPICE with subcircuits. A subcircuit in SPICE is a group of statements that is referenced as a single
entity. It is defined by a block of statements starting with a .SUBCKT statement and ending with a .ENDS
statement. In between are one or more statements. Once a subcircuit is defined, it can be called as a device
having a name that starts with an “X”. The codes for the 741 and LF351 subcircuits are given below. The
SPICE node numbers for each code are labeled in Fig. 2.29.

*741 OP-AMP SUBCIRCUIT *LF351 OP-AMP SUBCIRCUIT

SUBCKT 741 1 2 3 SUBCKT LF351 1 2 3

RI 1 2 2E6 RI 1 2 2E12

GM1 4 0 1 2 1.38E-4 GM1 4 0 1 2 2.83E-4

R1 4 0 1E5 R1 4 0 1E5

CC 4 5 20E-12 CC 4 5 15E-12

GM2 5 0 4 0 106 GM2 5 0 4 0 283

R01 3 5 150 R01 3 5 50

R02 5 0 150 R02 5 0 25

.ENDS 741 .ENDS LF351


