ECE 6416 Assignment 5

- 1. A BJT common-emitter amplifier with $R_E = 0$ is biased at $I_C = 0.5$ mA. The BJT has a base spreading resistance $r_x = 50 \Omega$ and a current gain $\beta = 150$. A JFET commonsource amplifier with $R_S = 0$ is biased at $I_D = 0.5$ mA. The JFET has a threshold voltage $V_{TO} = -2.5$ V and a drain-to-source saturation current $I_{DSS} = 3$ mA. Flicker noise can be neglected.
 - (a) Solve for the signal source resistance R_s at which the two transistors have the same noise equivalent input voltage v_{ni} .
 - (b) On the same axes, plot v_{ni} in V/ $\sqrt{\text{Hz}}$ versus R_s for a source resistance in the range 100 Hz to 100 kHz. Use log-log scales with a vertical range from 10^{-9} V to 10^{-7} V.
 - (c) On the same axes, plot the noise figure NF versus R_s for the same range of R_s . Use dB-log scales with a vertical range from 0 dB to 10 dB. Is the value of R_s at which the noise figures are equal the same as the value of R_s at which the equivalent noise input voltages are equal?
- 2. The figure shows a CMOS amplifier consisting of a p-channel input transistor M_1 and an n-channel load transistor M_2 biased by a fixed gate voltage V_B .

(a) Show that the small-signal voltage gain is given by

$$\frac{v_o}{v_i} = -g_{m1} \left(r_{ds1} \| r_{ds2} \right)$$

(b) Show that the small-signal short-circuit output current is given by

$$i_{o(sc)} = -g_{m1} \left(v_i + v_{n1} \right) - g_{m2} v_{n2}$$

(c) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^{2} = \frac{K_{f1}\Delta f}{2\mu_{p}L_{1}W_{1}C_{ox}^{2}f} \left[1 + \frac{K_{f2}}{K_{f1}} \left(\frac{L_{1}}{L_{2}}\right)^{2}\right]$$

How should the W and L for each device be chosen to minimize the noise? (L_2 and W_1 should be large and L_1 and W_2 should be small)

3. The following MOSFET data are given

	n-Channel (M_2)	p-Channel (M_1)	
$\frac{\mu_0 C_{ox}}{2}$	$7\mu\mathrm{A}/\mathrm{V}^2$	$3\mu\mathrm{A}/\mathrm{V}^2$	
$\frac{K_f}{2\mu_0 C_{ox}^2} \int_{20}^{20k} \frac{df}{f}$	$380 \times 10^3 (\mu V \times \mu m)^2$	$48 \times 10^3 (\mu \mathrm{V} \times \mu \mathrm{m})^2$	

If the value of C_{ox} is the same for both MOSFETs in the circuit of Problem 2, calculate v_{ni} for the following values of W and L:

	W_1	L_1	W_2	L_2
Case 1	$1000\mu{ m m}$	$5\mu{ m m}$	$400\mu{ m m}$	$4\mu{ m m}$
Case 2	$1000\mu{ m m}$	$5\mu{ m m}$	$200\mu{ m m}$	$8\mu{ m m}$
Case 3	$500\mu{ m m}$	$10\mu{ m m}$	$400\mu{ m m}$	$4\mu{ m m}$

 $(16.9\,\mu\text{V}, 8.88\,\mu\text{V}, \text{and } 33.4\,\mu\text{V})$

4. The figure shows an n-channel NMOS enhancement-mode common-source amplifier with an active n-channel NMOS enhancement-mode load. The two transistors are biased at the same drain current I_D and have the same value for C_{ox} .

(a) Show that the small-signal short-circuit output current is given by

$$i_{o(sc)} = -g_{m1} \left(v_i + v_{n1} \right) + g_{m2} v_{n2}$$

(b) Show that the small-signal output resistance is given by

$$r_{out} = r_{ds1} \|r_{ds2}\| \left(\frac{1}{g_{m2} \left(1 + \chi_2\right)}\right)$$

(c) Show that the open-circuit output voltage is given by

$$v_{o(oc)} = \left(-g_{m1}\left(v_i + v_{n1}\right) + g_{m2}v_{n2}\right) \times r_{ds1} \|r_{ds2}\| \left(\frac{1}{g_{m2}\left(1 + \chi_2\right)}\right)$$

(d) If only flicker noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^2 = \frac{K_{f1}\Delta f}{2\mu_n C_{ox}^2 L_1 W_1 f} \left[1 + \left(\frac{L_1}{L_2}\right)^2\right]$$

It is obvious that W_1 should be large to minimize the noise. What should L_1 be to minimize the noise? $(L_1 = L_2)$

(e) If only thermal noise is modeled, show that the mean-square equivalent noise input voltage is given by

$$v_{ni}^2 = \frac{4kT\Delta f}{3\sqrt{K_1I_D}} \left[1 + \sqrt{\frac{L_1W_2}{L_2W_1}} \right]$$

How should the W and L for each device be chosen to minimize the noise? (L_2 and W_1 should be large and L_1 and W_2 should be small)

- 5. Repeat problem 3 for part (d) of problem 4. $(14.0 \,\mu\text{V}, 10.3 \,\mu\text{V}, \text{and } 23.5 \,\mu\text{V})$
- 6. A common-source MOSFET amplifier is driven by a source with an output resistance $R_s = 50 \,\Omega$. The MOSFET has the parameters $g_m = 2 \,\mathrm{mS}$ and $c_{gs} = 1.5 \,\mathrm{pF}$. The frequency is $f = 900 \,\mathrm{MHz}$. It can be assumed that c_{gd} has been "tuned out" by the addition of a suitable matching network in parallel with the input.
 - (a) Calculate the value of an inductor L in series with the source which will give a resistance looking into c_{gs} from the gate of 50 Ω .
 - (b) Calculate the noise figure of the circuit.